HEWLETT-PACKARD

HPO7

Owner's Handbook
and Programming Guide

“The success and prosperity of our company will be assured only
if we offer our customers superior products that fill real needs and
provide lasting value, and that are supported by a wide variety of
useful services, both before and after sale.”

Statement of Corporate Objectives.
Hewlett-Packard

When Messrs. Hewlett and Packard founded our company in 1939,
we offered one superior product, an audio oscillator. Today, we offer
more than 3,000 quality products, designed and built for some of the
world’s most discerning customers.

Since we introduced our first scientific calculator in 1967, we've sold
over a million world-wide, both pocket and desktop models. Their
owners include Nobel laureates, astronauts, mountain climbers,
businessmen, doctors, students, and housewives.

Each of our calculators is precision crafted and designed to solve the
problems its owner can expect to encounter throughout a working
lifetime.

HP calculators fill real needs. And they provide lasting value.

HEWLETT@PACKARD

HP-67
Programmable Pocket Calculator

Owner’s Handbook
and
Programming Guide

October 1978

00067-90011 Rev. E 10/78

Printed in Singapore © Hewlett-Packard Company 1976

Contents

The HP-67 Pocket Programmable Calculator....... 8
Function Key Indexcccovviiiiiiiiiiiinnnn.. 8
The HP-67 ... i 10
Programming Key Indexccooiiiiii... 10

Meet the HP-67o... 15
Manual Problem Solving 16
Running a Prerecorded Program 17
Your OWN Programouuuiiinnnnnniiiiiinnnn 21
Using this Handbook 24

Part One: Using Your HP-67 Pocket Calculator....... 25

Section 1: Getting Started 27
Displaycovuiiiii e 27
Keyboard. ... 27
Keying In Numbers il 28
Negative Numberscoiiiii.. 29
Cleanngo e 29
Functionso i 30

One-Number Functionscoovuu... 31
Two-Number Functionscooiiin. 32
Chain Calculationscciiiiiiiiiieenn. 34
A Word aboutthe HP-67coo.... 39

Section 2: Display Control 41

Display Control Keyscccoeviiiiiiiiinnnnnn. 42
Display Number Changescccvv... 42
Scientific Notation Displayoouot. 43
Fixed Point Displayoooiiiia, 44
Engineering Notation Display 45

Automatic Display Switching 47

Keying In Exponentsof Ten 48

Calculator Overflow, 50

Error Displaycooiiiiiiiiii 50

LowPowerDisplay ...t 51

Section 3: The Automatic Memory Stack 53

The Stackcoiii 53
Initial Displayttt 53
Manipulating Stack Contents 54
Reviewingthe Stackoo it 54
Exchangingxandy ...l 55
Automatic Stack Review ol 56
Clearingthe Displaycccviiiiiiiiiiiene .. 57
The [AT 58
One-Number Functions and the Stack 60
Two-Number Functions and the Stack 60
Chain Arithmeticc .o, 62
Order of Executiont 66
LAST X ottt e 67
Recovering from Mistakes 67
Recovering a Number for Calculation 68
Constant Arithmetic......................oo ... 68
Section 4: Storing and Recalling Numbers........ 7
Storage Registers ...l 7
StoringNumbers i 72
Recalling Numbersl 72
Thel-Register, 73
Protected Secondary Storage Registers............... 74
Automatic Register Review 77
Clearing Storage Registersoovinnn. 79
Storage Register Arithmetic 81
Storage Register Overflow 83
Section S: Function Keys 85
Number Alteration Keyst 85
RoundingaNumbert 85
Absolute Value 86
Integer Portion of a Number 86
Fractional Portion of a Number 87
Reciprocalsoovii e 87
Factorials 88
Square ROOtSttt 89
SqUANNG . ..o 89
Using Pi. ... o 89
Percentagesooiiiiiiiiiii i 90

Percentof Changeol 91

Trigonometric Functions 92

Degrees/Radians Conversions 92
Trigonometric Modesol 93
Functionso i 93
Hours, Minutes, Seconds/Decimal Hours Conversions .. 94
Adding and Subtracting Time and Angles 96
Polar/Rectangular Coordinate Conversions 98
Logarithmic and Exponential Functions 103
Logarithms i 103
Raising Numbersto Powers 104
Statistical Functions o ool 107
Accumulations ... 107
Mean ... 111
Standard Deviation i 113
Deleting and CorrectingData 116
Vector Arithmetic. ...t 118
Part Two: Programming the HP-67................... 121
Section 6: _ 123
What Isa Program? ..., 124
Loading a Prerecorded Program 124
Stopping a Running Program 127
Looking at Program Memory 127
KeYCOdeS ...\ 129
Default Functions ool 131
Problems. 131
Clearinga Program i 132
Creating Your Own Program_. 133
The Beginningof @ Program). 133
Endinga Program . .o 134
The Complete Programooiua 134
Loadinga Programo, 134
Runninga Programo 137
Searching foralabel 137
Executing Instructions ool 138
Labels and Step 000cciiiiiiiiinn... 140
Flowcharts 141
Problems....... 144

Section 7: Program Editing
Nonrecordable Operations 147
Pythagorean Theorem Program 149

Nick Tamburri

Nick Tamburri

Nick Tamburri

Initializing a Program o il 150

Running the Program o 151
Resetting to Step 000o 151
Single-Step Execution of a Program 152
Modifyinga Program 154
Single-Step Viewing without Execution................. 155
Goingtoa Step Number 157
Stepping Backwards through a Program 158
Running the Modified Program 160
Deleting an Instruction 161
Problems...... 164
Section 8: Interrupting Your Program........... 169
Using (RIS) ... 169
Pausingina Program 172

Pausingto View Output 172

Pausing forinput........ 175
Section 9: Branching 179
Unconditional Branching and Looping 179
Problems 182
Conditionals and Conditional Branches 185
Problems 192
Section 10: Subroutines........................... 197
Routine-Subroutine Usage 204
Subroutine Limits 206
Problems 208
Sect 11: Controlling the I-Register............ 213
Storlng a Number Nl 213
Exchangingxandl............. 214
Incrementing and Decrementing the 1-Register 215
Problems 220
Section 12: Using ti Register fo

Indirect Control 223
Indirect Display Control 225
Indirect Storeand Recall 229
Indirect Incrementing and Decrementing

of Storage Registers............................... 238
Indirect Control of Branches and Subroutines........... 238
Rapid Reverse Branching 244

Problems 250

Section 13: Flags.......................o ... 255

Command-Cleared Flagscoiiivnnan.. 256
Test-Cleared Flagsccooiiiiiiiiiiiiinnnn. 256
DataEntryFlag 260
Problems 266
Section 14: Card Reader Operations 27
MagneticCards ...t 271
Program Cards ...t 272
Recording a Programontoa Card 272
Reloading a Recorded Program fromaCard 273
Merging Programso 274
Protectinga Card it 278
Markinga Cardottt 278
Data Cardscviit e 279
Recording DataontoaCard........................ 279
Loading DatafromaCard..................ccovnnn 281
Merged LoadingofData 286
PausingtoReadaCardcoouan.. 292
Section 15: The HP-67 and the
HP-97: Interchangeable Software 299
Keycodesottt 299
Print and Automatic Review Functions 302
A Word about Programming 305
Appendix A: Accessorieso..... 306
Standard Accessoriesoiiiiiiiiiia.. 306
Optional AcCeSSOrMeSoovviiiiiiiiiinnennnnnn. 306
Appendix B: Service and Maintenance 310
Your Hewlett-Packard Calculator 310
Battery Operationcciiiiiiiii.. 31
Recharging and AC Line Operation 311
Battery Pack Replacement 313
BatteryCaret 315
Magnetic Card Maintenance 315
SEIVICE .. i 316
Low Power ... 316
Blank Displayot 316
Blurring Displayccoviiiiiiii e 317
Improper Card Read Operation 317

Temperature Rangecccoiiiiiiiiinnn.. 318

Warranty 318

Full One-YearWarranty 318
Repair Policy ... 318
Repair Time ... 318
Shipping Instructions 318
Shipping Chargescooiiiii.. 319
Further Information 319
Appendix C: Improper Operations 320
Appendix D: Stack Lift and LAST X 322
Digit Entry Termination 322
Stack Lift 322
Disabling Operations 322
Enabling Operationscoui.... 322
Neutral Operations 322
LAST X o 323
Appendix E: Calculator Functions
and Keycodesl 324
General Indext 333

Lunar Module model on page 122 courtesy of NASA,
AMES Research Center.

The HP-67

Programmable Pocket Calculator

Function Key Index

Manual RUN Mode. W/PRGM-RUN switch wprGM [l[MIrun setto RUN.

Function keys pressed from the keyboard execute individual functions as they
are pressed. Input numbers and answers are displayed. All function keys listed
below operate either from the keyboard or as recorded instructions in a program.

orf Mo~ Power

switch (page 27).

wprcM [Run

Program mode switch
(page 124).

Default Functions

1/x 4X YX R¥ X%y

Default functions.
Operate only in man-
ual RUN mode when
no instructions have
been loaded into pro-
gram memory. Dupli-
cated by other
functions on calculator
for programming or
manual use (page
131).

Prefix Keys

Pressed before
function key, selects
gold function printed
below key (page 28).

Pressed before
function key, selects
blue function printed
below key (page 28).

m Pressed before
function key, selects
black function printed
on slanted key face
(page 28).

Digit Entry

Enters a copy
of number in displayed
X-register into Y-re-
gister. Used to
separate numbers
(page 58).

IS Changes sign of
number or exponent of
10 in displayed X-
register (page 29).

Enter exponent.
After pressing, next
numbers keyed in are
exponents of 10
(page 48).

(0] through (9] Digit
keys (page 28).

C] Automatic

stack review. Flashes
contents of stack in
order T, Z, Y, X, with
blinking decimal point
(page 56).

Number Alteration

Gives absolute
value of number in
displayed X-register
(page 86).

C] Leaves only
integer portion of num-
ber in displayed X-
register by truncating
fractional portion

(page 86).
8

[: Leaves only
fractional portion of
number in displayed
X-register by truncat-
ing integer portion
(page 87).

() Rounds mantissa
of 10-digit number in
X-register to actual
value seen in the dis-
play (page 85).
Number Manipulation

Rolls up contents
of stack for viewing in
displayed X-register
(page 55).

Rolls down con-
tents of stack for view-
ing in displayed X-
register (page 54).

Exchanges con-
tents of X- and Y-
registers of stack
(page 55).
(™3 Clears contents
of displayed X-register
to zero (page 29).
Percentage

(] computes x% of y
(page 90).

(Z2cH]) Computes per-
cent of change from
number in Y-register
to number in displayed
X-register (page 91).

Storage

Store. Followed
by address key, stores
displayed number in
primary storage reg-
ister (R, through Rg,
Ra through Rg,)
specified. Also used to
perform storage reg-
ister arithmetic

(page 72).

Recall. Followed
by address key, recalls
number from primary
storage register (R,
through Rg, R, through
Re,) specified into the
displayed X-register
(page 72).

Clears con-
tents of all primary
storage registers (R,
through Re, Rx through
Re, 1) to zero
(page 79).

Recalls num-
ber displayed before
the previous operation
backinto the displayed
X-register (page 67).

() Primary ex-
change secondary.
Exchanges contents

of primary storage reg-
isters R, through R,
with contents of pro-
tected secondary
storage registers Rs,
through Rsg

(page 74).

Automatic reg-
ister review. Flashes
contents of storage
registers in order R,
through Rg, R, through

Re, 1, register
address appears in
display preceding con-
tents of storage reg-
ister (page 77).

Display Control

(] selects fixed
point display
(page 44).

(5c1) Selects scien-
tific notation display
(page 43).

ENG| Selects engi-
neering notation dis-

play (page 46).

53 Followed by
number key, selects
number of displayed
digits (page 42).

Mathematics

(NY) Computes factorial
of number in displayed
X-register (page 88).

Computes re-
ciprocal of number in
displayed X-register
(page 87).

(&3] Computes square
of number in displayed
X-register (page 89).

(2] Ccomputes square
root of number in dis-
played X-register
(page 89).

Places value of pi
(3.141592654) into
displayed X-register
(page 89).

- x] -]
Arithmetic operators
(page 32).

9

Statistics

Accumulates
numbers from X- and
Y-registers into sec-
ondary storage reg-
isters Rs, through Rsg
(page 107).

(Z5 Subtracts x and y
values from storage
registers Rs, through
Rs, for correcting or
subtracting 43 ac-
cumulation entries
(page 116).

() Computes mean
(average) of x and y
values accumulated
by 23 (page 111).

(5) Computes sample
standard deviations
of x and y values
accumulated by B53
(page 113).

Polar/Rectangular
Conversion

8) converts x, y
rectangular coordi-
nates placed in X- and
Y-registers to polar
magnituder and angle
0 (page 99).

(3] converts polar
magnituder and angle
6in X- and Y-registers
to rectangular x and y
coordinates (page
100).

Flags

(SF) Set flag. Followed
by flag designator (0,
1, 2, or 3), sets flag
true (page 255).

Clear flag. Follow-
ed by flag designator
0, 1, 2, or 3), clears

flag (page 255).

Trigonometry

D Converts

decimal hours or de-
grees to hours,
minutes, seconds or
degrees, minutes,
seconds (page 94).

() converts hours,
minutes, seconds or
degrees, minutes,
seconds to decimal
degrees (page 94).

Adds hours,
minutes, seconds, or
degrees, minutes,
seconds in Y-register to
those in displayed
X-register (page 96).

(e s (any
Computes arc sine,
arc cosine, or arc tan-
gent of number in
displayed X-register
(page 93).

O3 com-

putes sine, cosine, or
tangent of value in
displayed X-register
(page 93).

D Converts degrees
to radians (page 92).

(] Converts radians
todegrees (page 92).

[DEG] Sets decimal
degrees mode for
trigonometric functions
(page 93).

[RAD] Sets radians
mode for trigonometric
functions (page 93).

\GRD] Sets grads mode
for trigonometric
functions (page 93).

Indirect Control

Store-I. Stores
number in I-register
(page 73).

[RCI}Recall-l. Recalls
number from I-register
(page 73).

[@ When preceded by
or =Y . the
address or control
value for that function
is specified by the
current number in I
(page 223).

[:] Increment and
skip if zero. Adds 1 to
contents of I. Skips
one step if contents
are then zero

(page 215).

(C) Increment (i)
and skip if zero. Adds
1 to contents of stor-
age register specified
by value in I. Skips
one step if contents
are then zero

(page 238).

D Decrement I and
skip if zero. Subtracts
1 from contents of 1.
Skips one step if con-
tents are then zero
(page 215).

[:] Decrement (i)
and skip if zero. Sub-
tracts 1 from contents
of storage register
specified by value in I.
Skips one step if con-
tents are then zero
(page 238).

(xx1] Exchanges con-
tents of displayed X-

register with those of
I-register (page 214).

Logarithmic
and Exponential

Raises number in
Y-register to power of
number in displayed

X-register (page 104).

(Gox) Common anti-
logarithm. Raises 10
to power of number in
displayed X-register
(page 103).

[:] Natural anti-
logarithm. Raises

e (2.718281828) to
power of number in
displayed X-register
(page 103).

(") Computes com-
mon logarithm (base
10) of number in dis-
played X-register
(page 103).

() Computes natural
logarithm (base e,
2.718...) of number in
displayed X-register
(page 103).

Magnetic Card
Control

:] If a magnetic

card is passed through
the card reader im-
mediately after this
operation, the con-
tents of the storage
registers are recorded
on the card (page
279).

(ercE]) Merges,
ratherthan overwrites,
data or program from
magnetic card with
data or program in
calculator (page 275).

Program Memory
000

001 84
002 84
003 84
004 84
005 84
220 84
221 84
222 84
223 84
224 84

Addressable Storage Registers

Primary Registers

The HP-67

Automatic Memory Stack

Displayed X.

LAST X

(i) Address

| -

Re[]

Ro____J23

Re[___J 2

Re[___] 21 Pr ted

R[] 20 Secondary Registers
(i) Address

Ry []9 Rss[n 19

R, [] 8 Rss [2xy] 18

R, 7 Rs; [3y*] 17

R [] 6 Rs[Zy] 16

R, [] 5 Rss (32] 15

R, [] 4 R, (3%] 14

R; [] 3 Res [] 13

R; []2 Rs:] 12

R, [] Rs: [] 1

R,]o Rso [—] 10

Registers

Vx IxX

Soooo
Seoom

CR-F=F)
w

o Yool e
-

Programming Key Index

PROGRAM Mode

Automatic RUN Mode

W/PRGM-RUN
switch setto W/PRGM

wrprGM [T RUN

All function keys ex-
cept the 5 default keys
and the functions
shown below are load-
ed into program

memory when pressed.

Program memory con-
tents recorded upon
magnetic card when
card passed through
card reader.

PRGM-RUN switch wprGM [Run

set to RUN.

Function keys may be executed as part of a
recorded program or individually by pressing
from the keyboard. Input numbers and
answers are displayed by the calculator,
except where indicated. Data or instructions
loaded from magnetic card into calculator
when card is passed through card reader.

Active keys:

In PROGRAM mode
only five operations are
active. These opera-
tions are used to help
record programs, and
cannot themselves be
recorded in program
memory.

Pressed from
keyboard:

(AJeJcHDYE]
Uooog

User-definable keys.
Cause calculator to
search downward
through program
memory to first desig-
nated label and begin
execution there.
(page 137).

Executed as a
recorded program
instruction:

[AfsjclolE)
@R E @A
(5 (e (9
Label designators.
When preceded by

, define begin-
ning of routine. When
preceded by or

(T, cause calculator
to stop execution,
search downward
through program
memory to first desig-
nated label, and re-
sume execution there
(page 133).

OO0 OO Label
designators. Operate
exactly as label desig-
nators listed above,
except they are pre-
ceded only by

(E01,@0, and
[(page 133).

10

PROGRAM Mode

Automatic RUN Mode

Active keys:

(&9 Go to. Followed

by(=] (n] (n] (n] posi-
tions calculator to step
n n n of program
memory. No instruc-
tions are executed
(page 157).

Pressed from
the keyboard:

& Go to. Followed
by E] @ @ @ sets
calculatortostepnnn
of program memory
without executing in-
structions. Followed
by label designator
@ throughl@, ()
through . @
through (9)) or ([,
causes calculator to
search downward
through program
memory to first des-
ignated label and
stop there

(page 179).

:]:]Goto

subroutine. Followed
by label designator,

(through E NG
through), (o
through (9], (),

causes calculator to
start executing in-
structions, beginning
with designated label
(page 207).

[RTN] Return. Sets
calculator to step 000
of program memory
(page 152).

Executed as a
recorded program
instruction:

Go to. Followed
by label designator
(u through 3.

C] through D@
through (9)) or [,
causes calculator to
stop execution, search
through program
memory to first des-
ignated label, and re-
sume execution there
(page 179).

[:][:]Goto

subroutine. Followed
by label designator
(I3 through E NB)
through (1), (0)
through (9)) or (@,
causes calculator to
search through pro-
gram memory to first
designated label and
execute that section of
program memory as a
subroutine (page 197).

(RTN] Return. If exe-
cuted as a result of
pressing a label desig-
nator or execution of a
1) instruction, stops
execution and returns
control to keyboard. If
executed as aresult of
a [:] instruction, re-
turns control to next
step after the ()
instruction (page 134).

11

PROGRAM Mode Automatic RUN Mode
Active keys: Pressed from Executed as a
keyboard: recorded program
instruction:
=7 clear pro- : After pre-

gram. Clears program
memory to all
instructions, sets
calculator to step 000,
clears all flags, and
specifies FIX 2 and
DEGREE modes

(page 132).

(BST) Back step.
Moves calculator back
one step in program
memory (page 158).

Single step.
Moves calculator for-
ward one step of
program memory
(page 155).

fix key, cancels that
key. After other keys,
does nothing. Does
not disturb program
memory or calculator
status (page 147).

(BST) Back step. Sets
calculator to and dis-
plays step number and
keycode of previous
program memory step
when pressed; displays
original contents

of X-register when
released. No instruc-
tions are executed
(page 158).

Single step.
Displays step number
and keycode of cur-
rent program memory
step when pressed;
executes instruction,
displays result, and
moves calculator to
next step when
released (page 152).

Stops pro-
gram execution and
transfers control to
keyboard for 1 second,
then resumes program
execution (page 172).

)) 6 N)
(x2g (x=0 (x>0} (x<J]

Conditionals. Each
tests value in X-regis-
ter against 0 or value
in Y-register as indi-
cated. If true, calcula-
tor executes instruc-
tion in next step of
program memory. If
false, calculator skips
one step before re-
suming execution

(page 186).

[F2] If flag true. Fol-
lowed by flag desig-
nator (0, 1, 2, or 3),
tests designated flag.
If flag is set (true) the
calculator executes
the instruction in the
next step of pro-
gram memory. If flag
is cleared (false), cal-
culator skips one step
before resuming exe-
cution. [F?] clears
flags F2 and F3 after
test (page 255).

12

PROGRAM Mode

Automatic RUN Mode

Active keys:

[DEL] Delete. Deletes
current instruction
from program memory.
All subsequent in-
structions moved up
one step (page 161).

Pressed from
the keyboard:

Run/stop. Begins
execution from current
step of program mem-
ory. Stops execution if
program is running
(page 169).

(DEL] After (3 prefix
key, cancels that key.
After other keys, does
nothing. Does not
disturb program
memory or calculator
status (page 161).

Any key. Pressing
any key on the key-
board stops execution
of a running program.

Executed as a
recorded program
instruction:

() Flash X. Pauses
to display contents of
X-register for 5 sec-
onds. Used to write
down answers or to
interface programs
with HP-97 Program-
mable Printing
Calculator (page 172).

Executed as
no operationin HP-67.
Used to interface pro-
grams with HP-97
Programmable
Printing Calculator

(page 304).

Run/stop. Stops

program execution
(page 169).

13

Meet the HP-67

Congratulations!

With your purchase of the HP-67 Programmable Pocket Calculator,
you have acquired a truly versatile and unique calculating instrument.
Using the Hewlett-Packard RPN logic system that slices with ease
through the most difficult equations, the HP-67 is without parallel:

As a scientific calculator. As a scientific calculator, the HP-67
features a multiple-entry keyboard with each of the 35 keys control-
ling up to four separate operations, ensuring maximum computing
power in a pocket instrument.

As a problem-solving machine. Anyone who can follow simple step-
by-step instructions can use the prerecorded magnetic cards in the
Standard Pac and the optional application pacs from the areas of
engineering, mathematics, finance, statistics, medicine, and many
other fields. Immediately!

As a personal programmable calculator. The HP-67 is so easy to
program and use that it requires no prior programming experience or
knowledge of arcane programming languages. Yet even the most
sophisticated computer experts marvel at the programming features
of the HP-67:

Magnetic cards that record data or programs—permanently.
26 data storage registers.

224 steps of program memory.

Fully merged prefix and function keys that mean more pro-
gramming per step.

Easy-to-use editing features for correcting and modifying
programs.

Powerful unconditional and conditional branching.

Three levels of subroutines, four flags, 20 easily-accessed
labels.

Indirect addressing.

15

16 Meet the HP-67

And in addition, the HP-67 can be operated from its rechargeable
battery pack for complete portability, anywhere.

Now let’s take a closer look at the HP-67 to see how easy it is to
use, whether we solve a problem manually, use one of the
sophisticated prerecorded programs from the Standard Pac, or even
write our own program.

Manual Problem Solving

To get the feel of your HP-67, try a few simple calculations. First,
set the switches that are located at the top of the keyboard as follows:

Set the OFF-ON switch orf[l[[loNn to ON.
Set the W/PRGM-RUN switch werem ll[[[IRuNn to RUN.

To solve: Press:

s+6=11 () momm e [77.0
3+2=4 G Somm e

[

=
o 7
N =]
° &
s

7-4=3 - = 3.00
9x8=72 BHEER e 72.00
% =020

Sine of 30° = 0.50 0.50

Now let’s try something a little more involved. To calculate the
surface area of a sphere, the formula A = md? can be used, where:

A is the surface area of the sphere,
d is the diameter of the sphere,
7 is the value of pi, 3.141592654.

Ganymede, one of Jupiter’s 12 moons, has a diameter of 3200 miles.
You can use the HP-67 to manually compute the area of Ganymede.
Merely press the following keys in order:

Press Display

BEOO Diameter of Ganymede.
= Square of the diameter.
The quantity .

Area of Ganymede in

square miles.

leet the HP-67 17

As you will see, these same keystrokes can be used to write a
program for the HP-67 that will solve for the area of any sphere.
But first let’s look at a prerecorded program, one of the fifteen
in the Standard Pac shipped with your calculator.

Running a Prerecorded Program

The Standard Pac shipped with your calculator contains 15 prere-
corded magnetic cards, and each card contains a program. By using
cards from the Standard Pac (or from any of the optional application
pacs, available in areas like finance, statistics, mathematics, engi-
neering, or medicine) you can use your HP-67 to perform extremely
complex calculations just by following the cookbook-style directions
in each pac. Let’s try running one of these programs now.

1. Select the Calendar Functions program from the Standard Pac
card case.

) CALENDAR FUNCTIONS)
Side 1 (DT-mm.ddyyyy: SUNDAY > 0) Side 2
—_— - —

DT, DT, <> ADYS <>AWKS.DYS DT+DOW

2. Ensure that the W/PRGM-RUN switch weram [IRuN is
set to RUN.

3. Insert side 1 of the Calendar Functions card, printed side up,
into the card reader slot on the right of the calculator as shown.
When the card is partially into the slot, a motor engages and
passes the card through the calculator and out a similiar slot
on the left of the calculator. Let the card move freely.

18 Meet the HP-67

4. The calculator display should read to prompt

you that side 2 of the card must be read in.
5. Now insert side 2 of the calendar functions card, again face up,
into the card reader slot on the right side of the calculator and

permit it to pass through the card reader to the rear of the
calculator.

6. If after either pass of the card through the card reader, the
display shows , that side of the card did not read
properly. Press €5 ,then insert that side of the card into the
card reader slot and let it pass through again.

7. When both sides of the card have been read properly, the display
will again show the previous answer.

8. Insert the card into the window slot, as shown. The markings
on the card should be directly over the keys marked 2]
&5 &5 & . The markings, or mnemonics, on the card now
identify the function of each of these five keys.

You are now ready to use the program.

Example: How many days are there between September 3, 1944 and
November 21, 1975?

Solution: The figure on the next page duplicates the user instructions
for the Calendar Functions program. These instructions can also be
found in the HP-67 Standard Pac, just as can the instructions for the
other 14 programs in the pac.

Meet the HP-67 19

INPUT
DATA/UNITS

STEP INSTRUCTIONS
1 Load side 1 and side 2.
2 | For day of the week calculations
go to step 6.
3 Input two of the following:
First date (mm.ddyyyy) DT,
Second date (mm.ddyyyy) DT,
Days between dates DAYS
or weeks between dates” WKS. DYS
4 | Calculate one of the following:
First date
Second date
Days between dates
Weeks between dates
5 | For a new case go to step 2.
6 | Input date and calculate day
of the week (0 = Sunday,
6 = Saturday). DT

7 | For a new case go to step 2.

*Either days between dates or
weeks between dates, but not

both, may be input in step 3.

KEYS

OUTPUT
DATA/UNITS

Day #,
Day #,
Days
Days

DT,
DT,
Days
WKS. DYS

DOW

To solve the problem, just follow the User Instructions, beginning
with step 1. Since you have already performed step 1, and you do
not wish to perform step 2, you continue on to step 3. There you
input the first date in the format mm.ddyyyy. (This means you key
in the date as the month, from 00 to 12, then a decimal point, then
the day as dd, and finally the year as yyyy.) Thus, to key in

September 3, 1944:

Press Display
09.031944

20 Meet the HP-67

Reading across the line, you can see that after you input the first
date (DT),), you are directed under the Keys heading to press .

Press Display

A 2431337. Julian day number

(number of days since the
inception of the Julian
calendar).

Now follow the instructions for the second date (DT,) which is
November 21, 1975.

Press Display

11.211975
(Julian day number used

by astronomers.)

Now you move to step 4, which gives the key you press for cal-
culation. You can see that to calculate the days between dates, you
press &5 .

Press Display
=

The number of days between September 3, 1944 and November 21,
1975 is 11401.

You can run the program again as often as you like. With the calendar
program, you can calculate the days between dates, the weeks
between dates, or even the day of the week on which any date falls.

You have seen from this example how simple it is to use your HP-67.
You can begin using your Standard Pac, or any of the optional
applications pacs, right now. All you have to do to begin taking

advantage of the calculating power and programmability of the HP-67
is follow simple instructions like these.

Meet the HP-67 21

Your Own Program

Earlier, you calculated the surface area of Ganymede, one of Jupiter’s
12 moons. Now, if you wanted the surface area of each moon, you
could repeat that procedure 12 times, using a different value for the
diameter d each time. An easier and faster method, however, is to
create a program that will calculate the surface area of a sphere
from its diameter, instead of pressing all the keys for each moon.

To calculate the area of a sphere using a program, you should first
create the program, then you must /oad the program into the cal-
culator, and finally you run the program to calculate each answer.
If you want to save the program, you can record it permanently on
a magnetic card.

Creating the Program. You have already created it! A program is
nothing more than the series of keystrokes you would execute to solve
the same problem manually. Two additional operations, a label and
a return are used to define the beginning and end of the program.

Loading the Program. To load the keystrokes of the program into
the calculator:

Slide the W/PRGM-RUN switch werem[[[[Iljrun to W/PRGM
(program).

Press €5 to clear program memory.

Press the following keys in order. (When you are loading a program,

the display gives you information that you will find useful later, but
which you can ignore for now.)

£33 @9 Defines the beginning of the program.

=

These are the same keys you pressed to solve the
o>
problem manually.

£ G0 Defines the end of the program.

The calculator will now remember this keystroke sequence.

22 Meet the HP-67

Running the Program. To run the program to find the area of any
sphere from its diameter:

1. Slide the W/PRGM-RUN switch wrrem JlI[[Irun back to
RUN.

2. Key in the value of the diameter.

3. Press &3 to run the program.

When you press &2, the sequence of keystrokes you loaded is auto-
matically executed by the calculator, giving you the same answer you
would have obtained manually.

For example, to calculate the area of Ganymede, with a diameter of
3200 miles:

Press Display

3200 3200.
on) 32169908.78 Square miles.

With the program you have loaded, you can now calculate the area
of any of Jupiter’s moons—in fact, of any sphere—using its diameter.
You have only to leave the calculator in RUN mode and key in the
diameter of each sphere for which you want the area, then press &%) .
For example, to compute the surface area of Jupiter’s moon o, with
a diameter of 2310 miles:

Press Display

2310 £2 Square miles.

For the moons Europa, diameter 1950 miles, and Callisto, diameter
3220 miles:

Press Display

1950 &2 Area of Europa in square
miles.

322088 32573289.27 Area of Callisto in square

miles.

Meet the HP-6 23

Programming the HP-67 is thar easy! The calculator remembers a
series of keystrokes and then executes it at the press of a single
key. In fact the HP-67 can remember up to 224 separate operations
(and many more keystrokes, since many operations require two or
three keystrokes) and execute them at the press of one of the label
keys. By using, say, label A for one program, label B for another,
etc., your calculator can contain many different programs at one time.

Recording the Program. Just as the programs in the Standard Pac
have been permanently recorded on magnetic cards, so you can record
your program on a magnetic card. To record your program:

1. Select a blank, unprotected (unclipped) magnetic card.

Side 1 61 ﬂ Side 2
Ea a a a a 2

2.

3.

Slide the W/PRGM-RUN switch wercm[[[IllRuN to
W/PRGM.

Insert side 1 of the card into the right card reader slot on the
calculator. Permit the card to pass through the card reader to the
left of the calculator. Since your program contains fewer than
113 instructions, you need to pass only one side of the card
through the card reader. Your program is now recorded on the
magnetic card.

Be sure to mark the card so you don’t forget what program is
on the card and what keys control the program. The marked card
might look like this when you are through:

GSPHERE SJRFAACE AREA
S 24 .

. The program now on the card will remain there until you record

another program over it. To save the program permanently,
so that no other program can be recorded on the card, clip the
corner of the card nearest side 1:

Side 1 Side 2

protected. [/_| SF//&E SVAFHCE A-ea. unclipped,

unprotected.
Sg2h.

24 Meet the HP-67

That’s all there is to it! You can reuse the program as often as you
like—merely pass the card through the card reader with the
W/PRGM-RUN switch set to RUN each time you want to load this
program into the calculator.

Using this Handbook

New to Hewlett-Packard Calculators? Part One of this handbook
has been designed to teach you to use your HP-67 as a powerful
scientific calculator. By working through these sections of the
handbook, you’ll learn every function that you can use to calculate
answers manually, and you’ll come to appreciate the calculating
efficiency of the Hewlett-Packard logic system with RPN. And since
the programmability of the HP-67 stems from its ability to remember
a series of manual keystrokes, Part One, Using Your HP-67
Calculator, is invaluable in laying the groundwork for Part Two,
Programming The HP-67.

Previous HP User? If you’ve already used Hewlett-Packard pocket or
desktop calculators with RPN, you may want to turn directly to Part
Two, Programming The HP-67. Later, though, you will undoubtedly
wish to peruse Part One at your leisure in order to discover the many
calculating advantages of the HP-67.

Whether an old hand or a novice, you’ll find the Function and Key
Index on pages 8-13 invaluable as a quick reference guide, a pro-
gramming guide, or even to illustrate the features of the HP-67 to
your friends.

Part One

Using Your HP-67
Pocket Calculator

'
(
[
i
'
d
i

Section 1

Getting Started

Your HP-67 is shipped fully assembled, including a battery. You can
begin using your calculator immediately by connecting the cord from
the ac adapter/recharger and plugging the charger into an ac outlet. If
you want to use your HP-67 on battery power alone, you should
charge the battery for 14 hours first. Whether you operate from battery
power or from power supplied by the charger, the battery pack must
always be in the calculator.

To begin:
Slide the W/PRGM-RUN switch wercm [ll[MIrun to RUN.
Slide the OFF-ON switch orr [i[l[lo~n to ON.

Display
Numbers that you key into the calculator and intermediate and

final answers are always seen in the bright red display. When
you first turn the calculator ON, the display is set to
to show you that all zeros are present there.

Keyboard

Each key on the keyboard can perform as many as four dif-
ferent functions. One function is indicated on the flat plane of
the key face, while another is printed in black on the slanted
face of the key. A third and a fourth function may be indicated
by printed symbols in gold and blue, respectively, below the
key.

There are three prefix keys, ,E8 | and &3 . By pressing one
of these prefix keys before pressing a function key, you select
the function printed on the slanted key face or one of the func-
tions printed in gold or blue below the function key.

To select the function printed on the flat plane of a function
key, press the key.

27

28 Getting Started

To select the function printed in black on the slanted key face,
first press the black prefix key. Then press the function
key.

To select the function printed in gold below the function key,
first press the gold prefix key. Then press the function key.

To select the function printed in blue below the function key,
first press the blue 88 prefix key. Then press the function key.

To execute this function,
/ simply press .

_To execute this function,
/" first press , then

press .

To execute this function,
first press &8 , then

press [2].

- To execute this function,
first press , then

press .

In this handbook, the selected key function will appear in the
appropriate color, outlined by a box, like this: @), (&, (3.

Keying In Numbers

Key in numbers by pressing the number keys in sequence, just
as though you were writing on a piece of paper. The decimal
point must be keyed in if it is part of the number (unless it is to
be right of the last digit).

Example:
Key in 148.84
by pressing the keys Display
AEEEEE

The resultant number 148.84 is seen in the display.

Getting Started 29
Negative Numbers

To key in a negative number, press the keys for the number, then
press [8)(change sign). The number, preceded by a minus (—) sign,
will appear in the display. For example, to change the sign of the
number now in the display:

Press Display
CHS -148.84

You can change the sign of either a negative or a positive nonzero
number in the display. For example, to change the sign of the —-148.84
now in the display back to positive:

Press Display
CHS 148.84

Notice that only negative numbers are given a sign in the display.

Clearing

You can clear any numbers that are in the display by pressing
(clear X). This key erases the number in the display and replaces it
with

Press Display

If you make a mistake while keying in a number, clear the entire num-
ber string by pressing (%3 . Then key in the correct number.

30 Getting Started

Functions

In spite of the dozens of functions available on the HP-67 keyboard,
you will find the calculator functions simple to operate by using a
single, all-encompassing rule: When you press a function key, the
calculator immediately executes the function written on the key.

Pressing a function key causes the calculator to
immediately perform that function.

For example, to calculate the square of 148.84, merely:

Press Display
148.84
a
To calculate the square root of the number now in the display:
Press Display
O

Notice that you did not use the (& function directly over the [E] key to
calculate the square root. The five functions above the 3, B, &,
2}, and [@ keys are known as default functions. When you first turn
the HP-67 ON, these default functions are present in the calculator,
and you can select any of them by simply pressing the appropriate
key (I3 through [3). However, as soon as you begin keying in a
program, the default functions are lost, and the top row keys (I3
through [@) are used to select programs or routines within programs.
The only way to restore the default functions to the calculator is to
clear the calculator of all programs, either by turning it OFF, then
ON, or by pressing == with the W/PRGM-RUN switch
wereMm [[[[IMRuN set to W/PRGM.

Each of the five default functions is duplicated by another key on the
keyboard. For example, you can select the square root function either
with the default function g or by pressing "~ (Z]. When the default
functions are operational, you can use a default function by pressing
only one keystroke. In this handbook, however, we normally show the
prefixed function instead of the default function.

Getting Started 31

Whether selected as a default function or as a prefixed function, (] is
an example of a one-number function; that is, a key that operates upon
a single number. All function keys in the HP-67 operate upon either
one number or two numbers at a time (except for statistics keys like 53
and (§)]—more about these later).

Function keys operate upon either one number or two
numbers.

One-Number Functions
To use any one-number function key:

1. Key in the number.
2. Press the function key (or press the prefix key, then the function
key).

For example, to use the one-number function (%] key, you first key in
the number represented by x, then press the function key. To calculate
Y%, key in 4 (the x-number) and press (3 (4] .

Press Display
4

Now try these other one-number function problems. Remember,
first key in the number, then press the function:

- = (002]
50.00

25

V2500 =

10° = (Use the (307 key.)
V3204100 =

log 12.58925411 = [1.10

712 = [5041.00

32 Getting Started

Two-Number Functions

Two-number functions are functions that must have two numbers
present in order for the operation to be performed. 3, & ,E3, and 8
are examples of two-number function keys. You cannot add, subtract,
multiply, or divide unless there are two numbers present in the calcu-
lator. Two-number functions work the same way as one-number
functions—that is, the operation occurs when the function key is
pressed. Therefore, both numbers must be in the calculator before the
function key is pressed.

When more than one number must be keyed into the calculator before
performing an operation, the key is used to separate the two
numbers.

Use the EXED key whenever more than one number must
be keyed into the calculator before pressing a function.

If you key in only one number, you never need to press @0 To
place two numbers into the calculator and perform an operation:

. Key in the first number.

. Press to separate the first number from the second.
. Key in the second number.

. Press the function key to perform the operation.

H W -

For example, to add 12 and 3:

Press

12 The first number.

Separates the first number from the second.
3 The second number.

The function.

The answer, , s displayed.

Getting Started 33

Other arithmetic functions are performed the same way:

To perform Press Display
12 -3 12 318 9.00
12 X3 12 KN x | 36.00
12 +3 12 3@ 4.00

The (¥ key is also a two-number operation. It is used to raise numbers
to powers, and you can use it in the same simple way that you use
every other two-number function key:

1. Key in the first number.

2. Press to separate the first number from the second.
3. Key in the second number (power).

4. Perform the operation (press @3 0%)).

When working with any function key (including (%)), you should
remember that the displayed number is always designated by x on the
function key symbols.

The number displayed is always x.

So (5] means square root of the displayed number, means
1

displayed number ete.
Thus, to calculate 3°:
Press Display
3
6 6. x, the displayed number,

is now six.

[h NF| 729.00 The answer.

34 Getting Started

Now try the following problems using the ") key, keeping in mind the
simple rules for two-number functions:

16* (16 to the

4™ power) =
81% (81 squared) = (You could also have

done this as a one-
number function using

&)
225 (Square root
of 225) = (You could also have
done this as a one-
number function using
=)
216 (2 to the

16" power) = | 65536.00

16:2% (4™ root
of 16) = [2.00

Chain Calculations

The speed and simplicity of operation of the Hewlett-Packard logic
system become most apparent during chain calculations. Even during
the longest of calculations, you still perform only one operation at a
time, and you see the results as you calculate—the Hewlett-Packard
automatic memory stack stores up to four intermediate results inside
the calculator until you need them, then inserts them into the calcu-
lation. This system makes the process of working through a problem
as natural as it would be if you were working it out with pencil and
paper, but the calculator takes care of the hard part.

For example, solve (12 + 3) X 7.
If you were working the problem with a pencil and paper, you would
first calculate the intermediate result of (12 + 3)...
X7 =
/5
...and then you would multiply the intermediate result by 7.

(27 x 7 =105
IS x7 =/9%

Getting Started 35

You work through the problem exactly the same way with the HP-67,
one operation at a time. You solve for the intermediate result first...

(12 +3)
Press Display
12
3
Intermediate result.

...and then solve for the final answer. You don’t need to press
to store the intermediate result—the HP-67 automatically
stores it inside the calculator when you key in the next number. To
continue...

Press Display

7 The intermediate result
from the preceding opera-
tion is automatically
stored inside the calcu-
lator when you key in

this number.

105.00 Pressing the function key
multiplies the new num-
ber and the intermediate
result, giving you the
final answer.

Now try these problems. Notice that for each problem you only have
to press EMZilto insert a pair of numbers into the calculator—each
subsequent operation is performed using a new number and an auto-
matically stored intermediate result.

I

To solve Press Display
(2 +3)
_= 2
10
3
10

36 Getting Started
To solve Press Display

3(16 — 4) 16

4
(-]
3
[x] [36.00]

14+7+3 -2
4

14

G Y R

5.50

Problems that are even more complicated can be solved in the same
simple manner, using the automatic storage of intermediate results.
For example, to solve (2 + 3) X (4 + 5) with a pencil and paper, you
would:

(2+3)X(4+5)

First solve for the contents ‘ /
of these parentheses... andthen for these parentheses..

...and then you would multiply the
two intermediate answers together.

Getting Started 37

You work through the problem the same way with the HP-67. First
you solve for the intermediate result of (2 + 3)....

Press Display
)
3
Intermediate result.

Then add 4 and S:

(Since you must now key in another pair of numbers before you can

perform a function, you use the@J{H) key again to separate the first
number of the pair from the second.)

Procedure Press Display

Q;?YXM 4EIED S8
q

Then multiply the intermediate answers together for the final answer:

Procedure Press Display

L2+7) x 4+ @
s x 9

Notice that you didn’t need to write down or key in the intermediate
answers from inside the parentheses before you multiplied—the
HP-67 automatically stacked up the intermediate results inside the
calculator for you and brought them out on a last-in, first-out basis
when it was time to multiply.

No matter how complicated a problem may look, it can always be
reduced to a series of one- and two-number operations. Just work

through the problem in the same logical order you would use if you
were working it with a pencil and paper.

38 Getting Started
For example, to solve:

9 +8) X (7 +2

(4 xX5)

Press Display

9 8 Intermediate result of
9 + 8).

7 2 Intermediate result of
T +2).

[x] (9 + 8) multiplied by
T +2).

4 58 Intermediate result of
@ X 5).

a 7.65 The final answer.

Now try these problems. Remember to work through them as you
would with a pencil and paper, but don’t worry about intermediate
answers—they’re handled automatically by the calculator.

2x3)+@x5) =[2600 |

(14 +12) X (18 —12) _
wo

. X
e

4%x(17-12)+(10-5)=[4.00 |

V2 +3)X@E+5 +VE+T7) x@+9) = [21.57

Getting Started 39
A Word about the HP-67

Now that you’ve learned how to use the calculator, you can begin to
fully appreciate the benefits of the Hewlett-Packard logic system.
With this system, you enter numbers using a parenthesis-free,
unambiguous method called RPN (Reverse Polish Notation).

It is this unique system that gives you all these calculating advantages
whether you’re writing keystrokes for an HP-67 program or using the
HP-67 under manual control:

You never have to work with more than one function at a time.
The HP-67 cuts problems down to size instead of making them
more complex.

Pressing a function key immediately executes the function. You
work naturally through complicated problems, with fewer key-
strokes and less time spent.

Intermediate results appear as they are calculated. There are no
‘“‘hidden’’ calculations, and you can check each step as you go.

Intermediate results are automatically handled. You don’t have
to write down long intermediate answers when you work a
problem.

Intermediate answers are automatically inserted into the prob-
lem on a last-in, first-out basis. You don’t have to remember
where they are and then summon them.

You can calculate in the same order that you do with pencil
and paper. You don’t have to think the problem through ahead
of time.

The HP system takes a few minutes to learn. But you’ll be amply
rewarded by the ease with which the HP-67 solves the longest most
complex equations. With HP, the investment of a few moments of
learning yields a lifetime of mathematical dividends.

Section 2

Display Control

In the HP-67, you can select many different rounding options for dis-
play of numbers. When you first turn on the HP-67, for example, the
calculator ‘‘wakes up’’ with numbers appearing rounded to two
decimal places. Thus, the fixed constant 7r, which is actually in the
calculator as 3.141592654, will appear in the display as 3.14 (unless
you tell the calculator to display the number rounded to a greater or
lesser number of decimal places).

Although a number is normally shown to only two decimal places, the
HP-67 always computes internally using each number as a 10-digit
mantissa and a two-digit exponent of 10. For example, when you
compute 2 X 3, you see the answer to only two decimal places:

Press Display

2 EIED 3 8

However, inside the calculator all numbers have 10-digit mantissas
and two-digit exponents of 10. So the HP-67 actually calculates using
full 10-digit numbers:

2.000000000 x 10% EREE 3.000000000 X 10 E3

yields an answer that is actually carried to full 10 digits internally:

[6.00 0000000 x 10%]

N ———

You see only these digits..&
...but these digits are also present.

41

42 Display Control

Display Control Keys

There are four keys, (2], (5ciJ, [EnG), and EE3 that allow you to
control the manner in which numbers appear in the display in the
HP-67. 53 followed by a number key changes the number of dis-
played digits without changing the format. (FX] displays numbers in
fixed decimal point format, while permits you to see numbers in
scientific notation format. [ENG) displays numbers in engineering nota-
tion, with exponents of 10 shown in multiples of three (e.g., 102, 1078,
10%5).

No matter which format or how many displayed digits you choose,
these display control keys alter only the manner in which a number is
displayed in the HP-67. The actual number itself is not altered by
any of the display control keys. No matter what type of display you
select, the HP-67 always calculates internally with numbers con-
sisting of full 10-digit mantissas multiplied by 10 raised to a two-digit
exponent.

Display Number Changes

The 53 (display) key followed by a number key specifies the num-
ber of digits that your HP-67 will display. For example, when you
turn the HP-67 ON, it ‘‘wakes up’’ with two digits displayed after
the decimal point. Using the EE3 key and the appropriate number
key (0-9), you can display up to nine digits after the decimal point.
For example:

Press Display
(Turn the calculator
OFF, then ON.) Calculator ‘‘wakes up’’

with two digits shown
after the decimal point.

3 4 0.0000 Four digits shown after

decimal point.

=3 9 0.000000000 Nine digits shown after
decimal point.
C=d 2 Two digits shown after

decimal point.

In the next few pages, you will see how ther[m and number keys are
used in conjunction with (F3], (5¢1), and [ENG] to display numbers in
any of a wide variety of formats.

Display Control 43

Scientific Notation Display

In scientific notation each number is displayed with a single digit to
the left of the decimal point followed by a specified number of digits
(up to nine) to the right of the decimal point and multiplied by a power
of 10. Scientific notation is particularly useful when working with
very large or small numbers.

10-digit mantissa

A A
Mantissa sign T Exponent of 10

Sign of exponent of 10
Scientific Notation Display

Scientific notation is selected by pressing £} (sci). The CE3J key
followed by a digit key is then used to specify the number of decimal
places to which the number is rounded. The display is left-justified
and includes trailing zeros within the setting selected by the (E3J key.
To change the number of places displayed after the decimal point,
use the key followed by the appropriate number key. For
example:

Press Display

(Turn the calculator

OFF, then ON.) Calculator ‘‘wakes up’’
with two places displayed
after the decimal point.

123.4567
9] 1.23 02| Displays 1.23 X 102.

Two decimal places
shown after decimal
point.

44 Display Control

33 4 1.2346 02] Displays 1.2346 X 102,
Notice that the display
rounds if the first hidden
mantissa digit is 5 or

greater.

R 7 Displays 1.2345670 X
102,

3 9 Displays 1.234567000 X
102.

=3 4 1.2346 02| Displays 1.2346 X 10°.

Fixed Point Display

When you first turn the HP-67 ON, the display you see is FIX 2—that
is, fixed point display with two decimal places shown. In fixed point
display, numbers are shown with a fixed number of displayed digits
after the decimal point. The number begins at the left side of the dis-
play and includes trailing zeros within the setting selected. You can
select fixed point display from the keyboard by using the (FX]
function.

10-digit number

A A
Sign Decimal point

Fixed Point Display

After you have specified fixed point format, you can use the B53 key
followed by the appropriate number key (0-9) to select the number of
places to which the display is rounded. For example:

Press Display
123.4567
/) Display is rounded to the

four decimal places you
specified earlier.

Display Control 45

=3 o 12
(osp I
(DsP 123.5 Notice that the display

rounds if the first hidden
digit is 5 or greater.

= 2 123.46 Normal FIX 2 display.

Engineering Notation Display

Engineering notation allows all numbers to be shown with exponents
of 10 that are multiples of three (e.g., 10, 107¢, 10'2).

N ——— ——
One significant T A » o A
digit always present. Specified significant Exponent of 10
digits after the first one. always a multiple
of three.

Engineering Notation Display

Engineering notation is particularly useful in scientific and engineer-
ing calculations, where units of measure are often specified in multi-
ples of three. See the prefix chart below.

Multiplier Prefix 1 Symbol
107 | tera T
10° giga | G
108 mega | M
10° klo | k
1073 mili | m
10°¢ micro | M
10°° nano i n
1072 pico | p
10715 femto ' f
1078 atto [a

46 Display Control

Engineering notation is selected by pressing 3 [ENG] . The first signifi-
cant digit is always present in the display. When you press (53
followed by a number key, you specify the number of additional
displayed digits after the first one. The decimal point always appears
in the display. For example:

Press Display
.000012345 [-000072345 |
0 (eng 12.3 -06 Engineering notation dis-

play. Since you had
specified 53 2 in the
previous example, the
number appears here
rounded off to two sig-
nificant digits after the
omnipresent first one.
Power of 10 is proper
multiple of three.

DSP K] 12.35 -06] Display is rounded off to
third significant digit
after the first one.

= 9
53 o 10. -06] Display rounded off to
first significant digit.

Notice that rounding can occur to the left of the decimal point, as in the
case of (ENG] O specified above.

When engineering notation has been selected, the decimal point shifts
to show the mantissa as units, tens, or hundreds in order to maintain
the exponent of 10 as a multiple of three. For example, multiplying
the number now in the calculator by 10 causes the decimal point to
shift to the right without altering the exponent of 10:

Press Display

(DsP i) (123 -06] ENG 2 display.
1083 123. -06] ENG 2 display.

Display Control 47

However, multiplying again by 10 causes the exponent to shift to
another multiple of three and the decimal point to move to the units
position. Since you specified ENG 2 earlier, the HP-67 maintains two
significant digits after the first one when you multiply by 10:

Press Display
1083 Decimal point shifts.

Power of 10 shifts to
1073. Display maintains
two significant digits
after the first one.

Automatic Display Switching

The HP-67 switches the display from fixed point notation to full
scientific notation (SCI 9) whenever the number is too large or too
small to be seen with a fixed decimal point. This feature keeps you
from missing unexpectedly large or small answers. For example, if
you try to solve (.05)® in normal FIX 2 display, the answer is auto-
matically shown in scientific notation.

Press Display

= Normal FIX 2 display.
.05 0.05 v

309 1.250000000-04] Display automatically

switched to SCI 9 to
show answer.

After automatically switching from fixed to scientific, when a new
number is keyed in or is pressed the display automatically reverts
back to the fixed point display originally selected.

48 Display Control

The HP-67 also switches to scientific notation if the answer is too
large (=10 for fixed point display. For example, the display will
not switch from fixed if you solve 1582000 X 1842:

Press Display
1582000
1842 B3 Fixed point format.

However, if you multiply the result by 10, the answer is too large
for fixed point notation, and the calculator display switches auto-
matically to scientific notation:

Press Display
10 83 2.914044000 10| Scientific notation

format.

Notice that automatic switching is between fixed and scientific nota-
tion display modes only—engineering notation display must be
selected from the keyboard.

Keying In Exponents of Ten

You can key in numbers multiplied by powers of 10 by pressing [E33
(enter exponent of 10) followed by number keys to specify the
exponent of 10. For example, to key in 15.6 trillion (15.6 X 10'2),
and multiply it by 25:

Press Display

15.6

G 15.6 00

12 15.6 12 (This means 15.6 X
10'2.)

Now Press Display

1.560000000 13

2583 3.900000000 14

Display Control 49

You can save time when keying in exact powers of 10 by merely
pressing (3 and then pressing the desired power of 10. For example,
key in 1 million (108) and divide by 52.

Press Display

(EEX] 1. 00} Youdo not have to key in
the number 1 before
pressing [EZ3 when the
number is an exact power
of 10.

6 1. 06

Since you have not
specified scientific nota-
tion, the number reverts
to fixed point notation
when you press ENED.

28

To see your answer in scientific notation with six decimal places:

Press Display
(o] 6 1.923077 _ 04

To key in negative exponents of 10, key in the number, press EZ3,
press to make the exponent negative, then key in the power of
10. For example, key in Planck’s constant (h)—roughly, 6.625 X
107%7 erg sec.—and multiply it by 50.

Press Display

0.000000 00
0 =2 0.00

6.625 E23 6.625 00
CHS 6.625 -00

27 6.625 =27

6.625000000-27
50 3 3.312500000-25] Erg sec.

50 Display Control

Calculator Overflow

When the number in the display would be greater than 9.999999999
X 10%, the HP-67 displays all 9’s to indicate that the problem has
exceeded the calculator’s range. For example, if you solve (1 X 10)
X (1 X 10%°), the HP-67 will display the answer:

Press Display

[0.00]
E33 49 [[1.000000000 49 |
(e x JRI0N x| [1.000000000 99 |

But if you attempt to multiply the above result by 100, the HP-67
display indicates overflow by showing you all 9’s:

Press Display
100 3 [9.999999999 99 | Overflow indication.

Error Display

If you happen to key in an improper operation (or if a magnetic card

fails to read properly) the word will appear in the
display.

For example, if you attempt to calculate the square root of —4, the
HP-67 will recognize it as an improper operation:

Press Display
4 (4.]
@ [Error |

Pressing any key clears the error and is not executed. The number
that was in the display before the error-causing function is returned to
the display so that you can see it.

(3,
-t

Display Control

Press Display
CLx

All those operations that cause an error condition are listed in
appendix C.

Low Power Display

When you are operating the HP-67 from battery power, a red lamp
inside the display will glow to warn you that the battery is close to
discharge.

6.02 23 Low Power Display

You must then connect the ac adapter/recharger to the calculator and
operate from ac power, or you must substitute a fully charged battery
pack for the one that is in the calculator. Refer to appendix B for
descriptions of these operations.

Section 3

The Automatic Memory Stack

The Stack

Automatic storage of intermediate results is the reason that the HP-67
slides so easily through the most complex equations. And automatic
storage is made possible by the Hewlett-Packard automatic memory
stack.

Initial Display
When you first switch the calculator ON, the display shows

in RUN mode. This represents the contents of the

display or ‘‘X-register.”’
Set the W/PRGM-RUN switch wrram ll[[[Irun to RUN.

Switch the HP-67 OFF, then ON.

Basically, numbers are stored and manipulated in the machine
“‘registers.”’ Each number, no matter how few digits (e.g., 0, 1, or
5) or how many (e.g., 3.141592654, -23.28362, or 2.87148907 X
10%7), occupies one entire register.

The displayed X-register, which is the only visible register, is one of
four registers inside the calculator that are positioned to form the
automatic memory stack. We label these registers X, Y, Z, and T.
They are ‘‘stacked’’ one on top of the other with the displayed
X-register on the bottom. When the calculator is switched ON, these
four registers are cleared to zero.

Name Register

T 0.00
z 0.00
Y 0.00
X 0.00 Always displayed.

53

54 The Automatic Memory Stack

Manipulating Stack Contents

The @Y (roll down), BY(roll up), and X< (x exchange y) keys allow
you to review the stack contents or to shift data within the stack for
computation at any time.

Reviewing the Stack

To see how the key works, first load the stack with numbers 1
through 4 by pressing:

4 EHED 3 EHED 2 ENED 1

The numbers that you keyed in are now loaded into the stack, and
its contents look like this:

4.00
3.00
2.00
1. Display.

X <N -

When you press [[R¥), the stack contents shift downward one
register. So the last number that you have keyed in will be rotated
around to the T-register when you press [[RY). When you press
(h] again, the stack contents again roll downward one register.

When you press (3 B4, the stack contents are rotated...

...from this... ...to this.
T 4.00 T 1.00
z 3.00 Zz 4.00
Y 2.00 Y 3.00
X 1 Display. X [2.00 Display.

Notice that the contents of the registers are shifted. The actual
registers themselves maintain their positions. The contents of the
X-register are always displayed, so [E] is now visible.

Press again and the stack contents are shifted...

...from this... ...to this.
T 1.00 T 2.00
Y4 4.00 z 1.00
Y 3.00 Y 4.00
X | 2.00 Display. X | 3.00 Display.

Press twice more...and the stack shifts...

...through this... ...back to the start again.

T 3.00 T 4.00

Y4 2.00 Y4 3.00

Y 1.00 Y 2.00

X | 4.00 Display. X | 1.00 Display.

Once again the number is in the displayed X-register.

Four presses of (3 roll the stack down four times, returning the
contents of the stack to their original registers.

You can also manipulate the stack contents using (3 (roll up).
This key rolls the stack contents up instead of down, but it otherwise
operates in the same manner as @ [RY).

Exchanging x and y

The (x exchange y) key exchanges the contents of the X- and
the Y-registers without affecting the Z- and T-registers. If you press
with data intact from the previous example, the numbers in
the X- and Y-registers will be changed...

...from this... ...to this.
T 4.00 T 4.00
y4 3.00 Y4 3.00
Y 2.00 >_<: Y 1.00
Display. X 1.00 X 2.00 Display.

56 The Automatic Memory Stack

Similiarly, pressing (3 again will restore the numbers in the X-
and Y-registers to their original places. This function can be used to
position numbers in the stack, whether operating manually or from a
program, or simply to bring the contents of the Y-register into the
X-register for display.

Notice that whenever you move numbers in the stack using one of
the data manipulation keys, the actual stack registers maintain their
positions. Only the contents of the registers are shifted. The contents
of the X-register are always displayed.

Automatic Stack Review

If you wish to quickly review the contents of the stack at any time,
use the () operation. When you press [l [ETK], the contents
of the stack are shifted, one register at a time, into the X-register
and displayed for about a half-second each. The order of display is
T, Z, Y, and finally the X-register contents again. Press £}
now and see the contents of the entire stack displayed. (If the stack
contents in your calculator remain intact from the previous example,
your displays should match the ones shown below):

Press Display

(s
1.00
2.00

9] operates exactly as four presses of @ (BY. You can see
that after displaying the contents of the entrie stack, the original
contents of the X-register are returned there and displayed.

While a) operation is being performed, the decimal point
blinks twice during the display of the contents of each register. This
is to identify this function as a program pause during a running pro-
gram, so that you will not think the program has stopped.

itic Memory Stack 57

When operating the HP-67 manually from the keyboard, you can slow
down or speed up the review of the stack contents by pressing
or any other key on the keyboard while the calculator is executing
ald stack review. As long as you hold the key depressed,
the contents of the stack register currently being displayed will remain
““frozen’’ in the display, permitting you to write down or examine
the number. As soon as you release the key you are holding depressed,
the contents of the next stack register to be displayed are shown.

Note: If the £} stack review is being executed as part
of a running program, depressing a key to “freeze” a stack
register display will cause the program to halt execution
after the B has been executed.

See section 15 for a description of how this operation helps you
interface programs that you create for your HP-67 Programmable
Pocket Calculator with the Hewlett-Packard HP-97 Programmable
Printing Calculator.

Clearing the Display

When you press (clear x), the displayed X-register is cleared to
zero. No other register is affected when you press [%3.

Press now, and the stack contents are changed...

...from this... ...to this.
T 4.00 T 4.00
y4 3.00 Y4 3.00
Y 1.00 Y 1.00
X 2.00 Display. X 0.00 Display.

Although it may be comforting, it is never necessary to clear the
displayed X-register when starting a new calculation. This will
become obvious when you see how old results in the stack are
automatically lifted by new entries.

58 The Automatic Memory Stack

The (SIIEN Key

When you key a number into the calculator, its contents are written
into the displayed X-register. For example, if you key in the number
314.32 now, you can see that the display contents are altered.

When you key in 314.32 with the stack contents intact from previous
examples the contents of the stack registers are changed...

...from this... ...to this.
T 4.00 T 4.00
Y4 3.00 4 3.00
Y 100 Y 1.00
X 0.00 Display. X 314.32 Display.

In order to key in another number at this point, you must first
terminate digit entry—i.e., you must indicate to the calculator that
you have completed keying in the first number and that any new
digits you key in are part of a new number.

Use the key to separate the digits of the first number from the
digits of the second.

When you press the key, the contents of the stack registers
are changed...

...from this... ...to this.
T 400 T 300 |
Z 300 Z 100
Y 1.00 Y | 314.32
X | 31432 Display. X | 3714.32) Display.

As you can see, the number in the displayed X-register is copied
into Y. The numbers in Y and Z have also been transferred to Z
and T, respectively, and the number in T has been lost off the top of
the stack.

The Automatic Memory Stack 59

Immediately after pressing EIEE, the X-register is prepared for a new
number, and that new number writes over the number in X. For
example, key in the number 543.28 and the contents of the stack
registers change...

...from this... ...to this.
T [3.00 T 300
y4 1.00 Y4 1.00
Y 314.32 Y 314.32
X |[314.32 Display. X |543.28 Display.

replaces any number in the display with zero. Any new number
then writes over the zero in X.

For example, if you had meant to key in 689.4 instead of 543.28,
you would press now to change the stack...

...from this... ...to this.
T [3.00 T 300
Z 1.00 Z 1.00
Y 31432 Y 314.32
X |543.28 Display. X |0.00 Display

and then key in 689.4 to change the stack...

...from this... ...to this.
T 3.00 T 3.00
4 1.00 4 1.00
Y 314.32 Y 314.32
X 000 Display. X 6894 Display.

Notice that numbers in the stack do not move when a new number
is keyed in immediately after you press EEE, , or B (E1x).
However, numbers in the stack do lift upward when a new number is
keyed in immediately after you press most other functions, including
0 RY, 0 7Y, and Y (x<3}.See appendix D, Stack Lift and LAST X,
for a complete list of the operations that cause the stack to lift. (If
you follow a regular function like &) or () with £} ETK), then key
in a number, the stack will lift.)

60 The Automatic Memory Stack

One-Number Functions and the Stack

One-number functions execute upon the number in the X-register
only, and the contents of the Y-, Z-, and T-registers are unaffected
when a one-number function key is pressed.

For example, with numbers positioned in the stack as in the earlier
example, pressing [(5] changes the stack contents...

...from this... ...to this.
T 3.00 T 3.00
Z 100 zZ 100
Y 314.32 Y 314.32
X 6894 Display. X |26.26 Display.

The one-number function executes upon only the number in the
displayed X-register, and the answer writes over the number that was
in the X-register. No other stack register is affected by a one-
number function.

Two-Number Functions and the Stack
Hewlett-Packard calculators do arithmetic by positioning the numbers
in the stack the same way you would on paper. For instance, if you
wanted to add 34 and 21 you would write 34 on a piece of paper and
then write 21 underneath it, like this:

34
21

and then you would add, like this:

34
+21

55

The Automatic Memory Stack 61

Numbers are positioned the same way in the HP-67. Here’s how it
is done. (As you know, it is not necessary to remove earlier results
from the stack before beginning a new calculation, but for clarity,
the following example is shown with the stack cleared to all zeros
initially. If you want the contents of your stack registers to match
the ones here, first clear the stack by using the and EED keys
to fill the stack with zeros.)

Press Display

CLX

Stack cleared to zeros
initially.

4 34 34 is keyed into X.
34.00 34 is copied into Y.
1 21. 21 writes over the 34 in X.

W

Ll

[\

Now 34 and 21 are sitting vertically in the stack as shown below,
so we can add.

T 0.00

z 0.00

Y 34.00

X 21. Display.
Press Display

+]

55.00 The answer.

The simple old-fashioned math notation helps explain how to use your
calculator. Both numbers are always positioned in the stack in the
natural order first, then the operation is executed when the function
key is pressed. There are no exceptions to this rule. Subtraction,
multiplication, and division work the same way. In each case, the
data must be in the proper position before the operation can be
performed.

62 The Automatic Memory Stack
Chain Arithmetic

You’ve already learned how to key numbers into the calculator and
perform calculations with them. In each case you first needed to
position the numbers in the stack manually using the key.
However, the stack also performs many movements automatically.
These automatic movements add to its computing efficiency and ease
of use, and it is these movements that automatically store intermediate
results. The stack automatically ‘‘lifts’’ every calculated number in
the stack when a new number is keyed in because it knows that after
it completes a calculation, any new digits you key in are a part
of a new number. Also, the stack automatically ‘‘drops’’ when you
perform a two-number operation.

To see how it works, let’s solve
16 +30 + 11 +17 =7?

If you press first, you will begin with zeros in all the stack
registers, as in the example below, but of course, you can also do the
calculation without first clearing the stack.

Remember, too, that you can always monitor the contents of the stack
at any time by using the £} operation.

Press Stack Contents

16 T 0.00
Z | 0.00 16 is keyed into the
Y | 0.00 displayed X-register.
X | 16.

T 0.00
Zz 0.00

16 i ied i .

Y 16.00 is copied into Y
X 16.00

30 T 0.00
z . . .

0.00 30 writes over the 16 in X.

Y 16.00
X 30.

11

17

X <N - X <N-H X < N-H

X <N+

0.00
0.00
0.00
46.00

0.00
0.00
46.00
11.

0.00
0.00
0.00
57.00

0.00
0.00
57.00
17.

0.00
0.00
0.00
74.00

16 and 30 are added
together. The answer,
46, is displayed.

11 is keyed into the
displayed X-register.
The 46 in the stack is
automatically raised.

46 and 11 are added
together. The answer, 57,
is displayed.

17 is keyed into the
X-register. 57 is
automatically entered
into Y.

57 and 17 are added
together for the
final answer.

After any calculation or number manipulation, the stack automatically
lifts when a new number is keyed in. Because operations are per-
formed when the operations are pressed, the length of such chain
problems is unlimited unless a number in one of the stack registers
exceeds the range of the calculator (up to 9.999999999 X 10%).

64 The Automatic Memory Stack

In addition to the automatic stack lift after a calculation, the stack
automatically drops during calculations involving both X- and Y-
registers. It happened in the above example, but let’s do the prob-
lems differently to see this feature more clearly. For clarity, first
press to clear the X-register. Now, again solve 16 + 30 + 11
+17 =7

Press Stack Contents

16 T 0.00
Z 0.00 16 is keyed into the
Y 0.00 displayed X-register.
X 16.

T 000
y4 0.00 . Lo
Y 16.00 16 is copied into Y.
X |16.00

30 T 0.00
Z 0.00 30 is written over
Y 16.00 the 16 in X.
X 30.

T 000
4 16.00 30 is entered into Y.
Y 30.00 16 is lifted up to Z.
X 30.00

11 T 0.00
Z 16.00 11 is keyed into the
Y 30.00 displayed register.
X 11.

[ENTER 4]
; ;ggz 11 is copied into Y. 16

: and 30 are lifted up to T

Y 11.00 dz tivel
X 11.00 and Z respectively.

17 16.00
30.00

11.00
17.

X < N =

16.00
16.00
130.00
28.00

X <N -

16.00
16.00
16.00
58.00

X < N-H

16.00
16.00
16.00
74.00

X <N -

¢ Memory Stack 65

17 is written over
the 11 in X.

17 and 11 are added to-
gether and the rest of the
stack drops. 16 dropsto Z
and is also duplicated in
T. 30 and 28 are ready to
be added.

30 and 28 are added to-
gether and the stack drops
again. Now 16 and 58 are
ready to be added.

16 and 58 are added to-
gether for the final answer
and the stack continues to
drop.

The same dropping action also occurs with &, Band 8. The number
in T is duplicated in T and drops to Z, the number in Z drops to Y,
and the numbers in the Y and X combine to give the answer, which

is visible in the X-register.

This automatic lift and drop of the stack give you tremendous comput-
ing power, since you can retain and position intermediate results in
long calculations without the necessity of reentering the numbers.

Order of Execution

When you see a problem like this one:
SX[B+4-(5+2)+@x3)]+@3 x .213),

you must decide where to begin before you ever press a key.

Experienced HP calculator users have determined that by starting
every problem at its innermost number or parentheses and working
outward, just as you would with paper and pencil, you maximize
the efficiency and power of your HP calculator. Of course, with the
HP-67 you have tremendous versatility in the order of execution.

For example, you could work the problem above by beginning at
the left side of the equation and simply working through it in left-
to-right order. All problems cannot be solved using left-to-right order,
however, and the best order for solving any problem is to begin with
the innermost parentheses and work outward. So, to solve the problem
above:

Press Display

3

4

a Intermediate answer for
3 +4).

5

2

= Intermediate answer for
5 +2).

(-] Intermediate answer for
B+4 -6 +2).

4

3

[] Intermediate answer for
(4 %X 3).

Intermediate answer for

B+4-(5=+2+
@ X 3).

The Automatic Memory Stack 67

3

213

8 Intermediate answer for
(3 X .213).

a

5 D The first number is keyed
in.

[x| The final answer.

LAST X

In addition to the four stack registers that automatically store interme-
diate results, the HP-67 also contains a separate automatic register, the
LAST X register. This register preserves the value that was in the
displayed X-register before the performance of a function. To place
the contents of the LAST X register into the display again, press
. A list of operations that copy x into the LAST X register is
given in appendix D.

Recovering from Mistakes

(ESTx) makes it easy to recover from keystroke mistakes, such as pressing
the wrong function key or keying in the wrong number.

Example: Divide 12 by 2.157 after you have mistakenly divided by
3.157.

Press Display

12

3.157 8 3.80 Oops! You made a mis-
take.

Retrieves that last entry
(3.157).

[x] You’re back at the
beginning.

2157 8 5.56 The correct answer.

68 The Automatic Memory Stack

In the above example, when the first & is pressed, followed by
@ (sTx), the contents of the stack and LAST X registers are
changed...

...from this... ...to this... ...to this.
T [0.00 | T | 000 | T | 000 |
Z 000 Z | 0.00 Z 0.00
Y 1200 Y 000 Y 380
X | 3157, @ X | 380 (h] X | 3.6

S Laerx]

This makes possible the correction illustrated in the example above.

Recovering a Number for Calculation

The LAST X register is useful in calculations where a number occurs
more than once. By recovering a number using (LSTx], you do not
have to key that number into the calculator again.

Example: Calculate

7.32 +3.650112331
3.650112331

Press Display

7.32 7.32

7.32

3.650112331 3.650112331 |

10.97 | Intermediate answer.

0 (st 3.65 Recalls 3.650112331 to
X-register.

a 3.01 The answer.

Constant Arithmetic

You may have noticed that whenever the stack drops because of a
two-number operation (not because of (RY)), the number in the
T-register is reproduced there. This stack operation can be used to
insert a constant into a problem.

The Automatic Memory Stack 69

Example: A bacteriologist tests a
certain strain whose population
typically increases by 15% each day.
If he starts a sample culture of 1000,
what will be the bacteria population at
the end of each day for six consecutive
days?

Method: Put the growth factor (1.15) in the Y-, Z-, and T-registers
and put the original population (1000) in the X-register. Thereafter,
you get the new population whenever you press E3.

Press Display

1.15 Growth factor.

Growth factor now in T.
1000 Starting population.

8 Population after 1% day.
[x] [1322.50 | Population after 2"¢ day.
[] 1520.88 Population after 3" day.
[x | Population after 4™ day.
[] [2011.36] Population after 5™ day.
] [2313.06] Population after 6 day.

When you press EJ the first time, you calculate 1.15 X 1000. The
result (1150.00) is displayed in the X-register and a new copy of the
growth factor drops into the Y-register. Since a new copy of the
growth factor is duplicated from the T-register each time the stack
drops, you never have to reenter it.

Notice that performing a two-number operation such as EJ causes
the number in the T-register to be duplicated there each time the
stack is dropped. However, the [RY) key, since it rotates the contents of
the stack registers, does not rewrite any number, but merely shifts
the numbers that are already in the stack.

Section 4

Storing and Recalling Numbers

You have learned about the calculating power that exists in the four-
register automatic memory stack and the LAST X register of your
HP-67 calculator. In addition to the automatic storage of intermediate
results that is provided by the stack, however, the HP-67 also contains
26 addressable data storage registers that are unaffected by operations
within the stack. These registers allow you to manually store and
recall constants or to set aside numbers for use in later calculations.
Like all functions, you can use these storage registers either from
the keyboard or as part of a program.

Storage Registers

The diagram below shows the addressable storage registers. You can
see that these registers consist of two banks, the primary registers
and the secondary registers. The subscripts A through E and 0 through
9 refer to the register addresses.

Automatic Memory Stack Addressable Storage Registers

T Primary Registers

z
M R]
X

LASTX [o) S—
Protected

Secondary Registers

Y — W mes|
Y — R BT
Y — Ry BT
Y — R BEE
Y — Fls R
Y — e, EETE]
) — N |
R[] R]
L — A, (]
(Y —— o TR

72 Storing and Recalling Numbers

Storing Numbers
To store a displayed number in the primary storage registers R,
through Rg or R, through Rg:

1. Press (store).
2. Press the letter key (§ through @), or the number key ((0]
through (9)) of the desired primary register address.

For example, to store Avogadro’s number (approximately 6.02 X
10%) in register Ry:

Press Display
6.02 @33 23 6.02 23
2 6.020000000 23

Avogadro’s number is now stored in register R,. You can see that
when a number is stored, it is merely copied into the storage register,
$0 6.02 X 10?3 also remains in the displayed X-register. To store the
square of Avogadro’s number in register Rg:

Press Display

o ["3.624040000 47
o [3.624040000 47

The square of Avogadro’s number has been copied into storage
register Ry and also remains in the displayed X-register.

Recalling Numbers

Numbers are recalled from primary storage registers back into the
displayed X-register in much the same way as they are stored. To
recall a number from any of primary storage registers R, through Rg
or R, through Ry:

1. Press (recall).
2. Press the letter key ([through @), or the number key ([0
through (9]) of the desired storage register address.

Storing and Recalling Numbers 73

For example, to recall Avogadro’s number from register R,:

Press Display

2 6.020000000 23

To recall the square of Avogadro’s number from register Rg:

Press Display
(6] 3.624040000 47

When you recall a number, it is copied from the storage register
into the display, and it also remains in the storage register. You can
recall a number from a storage register any number of times without
altering it—the number will remain in the storage register as a 10-digit
number with a two-digit exponent of 10 until you overwrite it by
storing another number there, or until you clear the storage registers.
For example, even though you earlier recalled Avogadro’s number
from storage register R,, you can recall it again:

Press Display
2 6.020000000 23

The I-Register

The I-register has a number of special properties that make it useful in
programming, but these will be discussed later. The simplest function
of the I-register is its use as another of the primary storage registers in
your HP-67. To store a number in the I-register, press () (store
I). To then recall that number from the I-register into the display, press

(recall I).

Example: Three tanks have capacities in U.S. units of 2.0, 14.4,
and 55.0 gallons, respectively. If 1 U.S. gallon is equivalent to
3.785 liters, what is the capacity of each of the tanks?

Method: Place the conversion constant in one of the storage registers
and bring it out as required.

74 Storing and Recalling Numbers

Press Display
3.785 Constant placed in I
28 rCefl;Ztcei:y in liters of 1%t
14.4 a8 té:;l)l}city in liters of 2"d
nk.
55 a8 (20818 | tCaalla(acity in liters of 3d
tank.

Protected Secondary Storage Registers

In addition to the primary storage registers, your HP-67 also provides
you with 10 secondary storage registers that are protected; that is,
you cannot access the secondary storage registers directly with
and 98 . These registers are used most often by the statistical
functionBfj (about which more later) and for programming purposes.
However, they can be accessed manually from the keyboard by using

the 5] key.

For example, in order to store a number from the displayed X-register
into secondary storage register Rgs, you first store the number in
primary register Rs; and then press 2] (primary exchange
secondary). When you press (=], the contents of the primary
registers R, through Ry are exchanged with the contents of secondary
storage registers Rg, through Rgy. No other storage or stack registers
are affected.

For example, to store 16,495,000 (the number of persons carried daily
by the Japanese National Railway) in secondary storage register Rgs:

Press Display

16495000 [16495000.
5 [16495000.00 Number stored in register
Rs.

3 All secondary registers
exchanged with num-
bered primary registers,
so number is now stored
in secondary storage
register Rgs.

lling Numbers 75
With results from previous examples intact, when you pressed ("5) in
the above example, the contents of all numbered storage registers

were exchanged.

So the contents of the storage registers changed...

...from this... ...to this.

Primary Registers

Primary Registers

1 1B]
Re Re
Ro(000) Rof000)
Re R[000]
R, [3.6240400000 47 Re
R R
Secondary Secondary
Registers Registers
R[000 J=—=Ry,(000] R[000] Rss
R[000 Je—=Ru[000] R(000_____] Re(000)
R =R, [0.00 R, [0:00 Ry (000]
Re =™ R[000] R [000]
R, [16495000.00 _]s—R,, Ry Rs; [16495000.00
R[000) ——R.[000) RO] Ru[000 —]
Rfo00 J—=Rs(000] Ry Rss
R ——Rgl000] R, Rs;
R, [0.00 = r,RE) R, [0:00 Rsy
R ——Rs,[0:00_ R, [0.00] Rso

When you press (C-), the contents of each number-addressed
primary storage register are exchanged with its opposite-numbered
secondary storage register. Thus, in order to bring out the numbers
that are now in the secondary storage registers, you must use the

(5] keys followed by the key and the number key of the
register address. For example, to recall the number of persons carried
daily by the Japanese National Railway, you cannot merely press
5 now, since the number in primary storage register R is 0.00:

Press Display
o s

76 Storing and Recalling Numbers

However, you can press [/ (£x3) to bring the stored quantities back
into the primary storage registers, then summon the desired quantities
by pressing [E8followed by the number key of the desired address:

Press Display
3 [0.00
5 [16495000.00 Number of persons

carried daily by the
Japanese National
Railway.

When you press (£:5, only the contents of the primary and secondary
registers are exchanged. The actual registers remain intact and are not
exchanged.

You can place numbers in corresponding primary and secondary
registers and recall them at will. For example, to place the number of
persons carried in five days by the Japanese National Railway into
secondary register Rgs while leaving the number of persons carried
daily intact in primary register Rj:

Press Display

589 82475000.00
=3 82475000.00

5 82475000.00
=3 82475000.00

You can now use 5 to summon the number of persons carried
daily, and 7 (23] followed by 5 to summon the number of
persons carried in five days:

Press Display

5 76495000.00
=S 16495000.00
5 82475000.00

Storing and Recalling Numbers 77

Automatic Register Review

To view the contents of any individual primary storage register, you
can recall the contents of the register into the displayed X-register.
However, you can also review the contents of all primary storage
registers by using the (register review) function.

When you press (3 , the contents of each primary storage register
are automatically shown by the display, beginning with register R,
and continuing through register Ry, then R, through Rg, and finally I.
In addition, an address identifying the register being displayed appears
on the right-hand side of the display preceding the storage register
contents. The addresses are O through 9 to indicate storage registers
R, through Ry, 20 through 24 to indicate registers R, through Rg, and
25 to indicate the I-register.

(The reason for this addressing scheme will become clear later, when
you learn about indirect addressing.)

For example, if you have worked through the examples as shown
above, an automatic register review should give you displays like
the ones shown below.

Press Display

|

Address for register R,.
0.00 Contents of R,.

|

0.00

IiN

0.00

I

(=]
o
(=]

Address for register Rs.
82475000.00 Contents of R;.

0.00

|

0.00

78 Storing and Recalling Numbers

Display
8
0.00
L 9]
[20]
0.00
(3.624040000 47
L 22]
0.00
23
0.00

Address for Rg.
Contents of Rg.

Address for I-register.
Contents of 1.

Original contents of
X-register.

If you want only a partial listing of the primary storage registers,
you stop the review of them at any time by pressing or any
other key from the keyboard. The key function is not executed.

To view the contents of the secondary storage registers, simply press
(=3 to bring those contents into the primary registers, then press
to view the desired primary registers again. For example:

Press

3

Display
82475000.00

6.020000000 23

Il

R/S

£ N

o
b~
~]

I

(3]

[16495000.00

I

[0.00

[7
[0.00
[8
[0.00
[9
[0.00

|
I
}
|
|
|
I
|
|

[82475000.00

| When you press any key,

the automatic review
stops and the original
contents of the X-register
are returned to the
display.

Naturally, if you want the present contents of primary registers Ro
through Ry returned to the protected secondary registers, you must

press

Clearing Storage Registers

Even though you have recalled the contents of a storage register into
the displayed X-register, the number also remains in the storage
register. You can clear primary storage registers in either of two ways:

To replace a number in a single storage register, merely store
another number there. To clear a storage register, replace the
number in it with zero. For example, to clear storage register
R,, press 0 2.

To clear all primary storage registers back to zero at one time,
(CLEEC). This clears all primary storage registers, while
leaving the automatic memory stack and the secondary storage
registers unchanged.

80 Storing and Recalling Numbers

To clear the secondary storage registers, use the (°:5] key to bring their
contents into the primary registers, then clear those registers in either
of the methods described above.

For example, to clear storage register Rg only, then to clear all primary
registers, and finally all secondary registers:

Press Display

sl &)
(5] R; contents have been
cleared to zero.

All primary registers
cleared to zero. Second-
ary registers remain
intact.

L 9

Contents of secondary
registers exchanged with
primary registers.

All storage registers have
now been cleared to zero.

Notice that the stack registers remain intact when you press/ [CL2eC].
To clear the displayed X-register, of course, you can press (S¥3 .

To clear the entire stack, press EED EED ENED .

(Because of the automatic lift and drop of the stack, you should never
have to clear it.) When the calculator is turned ON, it ‘‘wakes up’’
with the stack and all storage registers cleared to zero, so turning the
calculator OFF, then ON clears the stack, the storage registers, and all
program information. (This also should never be necessary.)

Storing and Recalling Numbers 81

Storage Register Arithmetic

You can, of course, perform arithmetic (or any other function) in the
normal manner by recalling and using the contents of any storage
register just as if it were a number you keyed in. The HP-67 also
permits you to perform storage register arithmetic in storage registers;
that is, arithmetic upon the contents of the selected register.

Storage register arithmetic can be performed directly upon the contents
of primary registers R, through Ry only; it cannot be performed
directly upon any other storage register. (However, storage register
arithmetic can be performed indirectly upon the contents of any
storage register, as you will see in section 12, Using the
I-Register for Indirect Control.)

To perform storage register arithmetic directly, press followed
by the arithmetic function key followed in turn by the number key
((@) through (9)) of the primary register address. For example:

Press Result

1 Number in displayed X-register added to contents of
primary storage register R;, and sum placed into R;;
(r; + x > R)).

B2 Number in displayed X-register subtracted from
contents of primary storage register R,, and difference
placed into R,; (1 — x — Ry).

B33 Number in displayed X-register multiplied by contents
of primary storage register Rz, and the product placed
into R3; |(r5) x = R, |.

B 4 Contents of storage register R, divided by number in
displayed X-register, and quotient placed into register
Ry (ry = x = Ry).

When storage register arithmetic operations are performed, the
answer is written into the selected storage register, while the contents
of the other storage registers and the displayed X-register and the rest
of the stack remain unchanged.

82 Storing and Recalling Numbers

Example: During harvest, farmer Flem
Snopes trucks tomatoes to the cannery |,
for three days. On Monday and
Tuesday he hauls loads of 25 tons, 27
tons, 19 tons, and 23 tons, for which
the cannery pays him $55 per ton. On
Wednesday the price rises to $57.50
per ton, and Snopes ships loads of 26
tons and 28 tons. If the cannery deducts
2% of the price on Monday and
Tuesday because of blight on the tomatoes, and 3% of the price on
Wednesday, what is Snopes’ total net income?

Press Display

25 EOED 27

19 &4 23 Total of Monday’s and
Tuesday’s tonnage.

558 Gross amount for
Monday and Tuesday.

5 Gross placed in storage
register Rs.

203 Deductions for Monday
and Tuesday.

as Deductions subtracted
from total in storage
register Rs.

26 ENED 28 54.00 _ Wednesday’s tonnage.

57.50 B 3105.00 Gross amount for
Wednesday.

[+ B Wednesday’s gross
amount added to total in
storage register R;.

30 @ Deduction for
Wednesday.

- B Wednesday’s deduction

subtracted from total in
storage register Rs.

[ReL B 8078.45 Snopes’ total net income

from his tomatoes.

(You could also work this problem using the stack alone, but doing
it as shown here illustrates how storage register arithmetic can be
used to maintain and update different running totals.)

Storage Register Overflow

If you attempt a storage register arithmetic operation that would cause
the magnitude of a number in any of the storage registers to exceed
9.999999999 X 10%, the operation is not performed and the HP-67

display immediately indicates .

When you then press any key, the error condition is cleared and the
last value in the X-register before the error is again displayed. The
storage registers all contain the values they held before the error-
causing operation was attempted.

For example, if you store 7.33 X 10°2 in primary register R, and
attempt to use storage register arithmetic to multiply that value by

10%, the HP-67 display will show :

Press Display

7.33
A 52
1
G 50
8

To clear the error and display the contents of the X-register, press
any key. The original contents of storage register R, are still present
there.

Press Display
CLX 1.000000000 50} Contents of X-register.
1 7.330000000 52] Contents of storage

register R;.

Section 5

Function Keys

The HP-67 has dozens of internal functions that allow you to compute
answers to problems quickly and accurately. Each function operates
the same way, regardless of whether you press the function key
manually or the function is executed as part of a program.

To use any of the keys manually, first ensure that the W/PRGM-
RUN switch wipram [l RuN is set to RUN.

Number Alteration Keys

Besides €5 , there are four keys provided for altering numbers in the
HP-67. These keys are (0], (&BS), ("], and (FRAC], and you will
find them most useful when performing operations as part of a
program.

Rounding a Number

As you know, when you change display formats with one of the dis-
play control keys (7], (51, (ENG), or EE3), the number maintains
its full value to 10 digits multiplied by a two-digit exponent of 10
no matter how many digits you see. When you press the " prefix
key followed by the (0] (round) key, however, the number that is
in the display becomes the actual number in the calculator. For
example, key in the number of cubic centimeters in one cubic inch,
16.387064 and round it to two decimal places:

Press Display

16.387064 16.387064
[DSP [Number rounded to two
decimal places indisplay.
Maintains entire value
internally.

D Number rounded to two

decimal places internally.

CE3 6 FIX 6 display shows

that number has been

rounded.
The original number.
DsP W Display mode reset to
FIX 2.

A fixed point number that has underflowed to scientific notation
display is rounded to 0.00 by the (0] function.

Absolute Value

Some calculations require the absolute value, or magnitude, of a
number. To obtain the absolute value of the number in the displayed
X-register, press the [shift key followed by the (absolute
value) key. For example, to calculate the absolute value of —3:

Press Display
3 -3.
3.00 |3

To see the absolute value of +3:

Press Display
|+3]

Integer Portion of a Number

To extract and display the integer portion of a number, press the
prefix key followed by the (7] (integer) key. For example, to

display only the integers of the number 123.456:

Press Display
123.456
@ Only the integer portion

of the number remains.

When [(] is pressed, the fractional portion of the number is
lost. The entire number, of course, is preserved in the LAST X
register.

Fractional Portion of a Number

To extract and display only the fractional portion of a number, press
the) prefix key followed by the (E2AC] (fraction) key. For example,
to see the fractional portion of the 123.456 used above:

Press Display
]

Summons the original
number back to the
X-register.

(D) Only the fractional
portion of the number is
displayed, rounded here
to FIX 2 display.

When [} (FRAC] is pressed, the integer portion of the number is lost.
The entire number, of course, is preserved in the LAST X register.

Reciprocals

To calculate the reciprocal of a number in the displayed X-register,
key in the number, then press @3 (%) . For example, to calculate the
reciprocal of 25:

Press Display

250 (&

You can also calculate the reciprocal of a value in a previous
calculation without reentering the number.

88 Function Keys

Example: In an electrical circuit, four resistors are connected in
parallel. Their values are 220 ohms, 560 ohms, 1.2 kilohms, and 5
kilohms. What is the total resistance of the circuit?

Press

22003 (&)
560 03 (&)

1200 03 (&)

5000 03 (&)

@ &

Factorials

4.545454545-03
1.785714286-03

2.000000000-04

1
R,
L1
5000

Sum of reciprocals.
The reciprocal of the sum
of the reciprocals yields
the answer in ohms.

The (NJ (factorial) key permits you to handle permutations and
combinations with ease. To calculate the factorial of a positive integer

in the displayed X-register, press @3 (N1 .

Example: Calculate the number of ways that six people can line up

for a photograph.

Method: P§ = 6! =6 X5 X4 X3 X2 X1.

Press

6
G (v

[|
[72000]

The answer.

The calculator overflows for factorials of numbers greater than 69.

Function Keys 89

Square Roots

To calculate the square root of a number in the displayed X-register,
press (5]. For example, to find the square root of 16:

Press Display

162 (3

To find the square root of the result:

Press Display

O

Squaring
To square a number in the displayed X-register, press B (x3J. For
example, to find the square of 45:

Press Display

SO

To find the square of the result:

Press Display
o 100625

Using Pi

The value 7 accurate to 10 places (3.141592654) is provided as a
fixed constant in the HP-67. Merely press @ () whenever you need
it in a calculation. For example, to calculate 3

Press Display

0@E (942]

90 Function Keys

Example: In the schematic diagram below, Xy is 12 kilohms, E is
120 volts, and f is 60 Hz. Find the inductance of the coil L in henries
XL

ding to the f la: L = .
according to the formula St

Lo X _ _ 12,000
2af 2 X m X 60

Press Display

12 3 12000.00

28 6000.00

@ a 1909.86

60 8 Henries.
Percentages

The (7] key is a two-number function which allows you to compute
percentages. To find the percentage of a number:

1. Key in the base number.

2. Press EIED.

3. Key in the number representing percent rate.
4. Press . (3.

The formula used is:); Y - g,

For example, to calculate a sales tax of 6.5% on a purchase of
$1500:

Press Display

1500 1500.00 Base number.

6.5 Percent rate.
@] 97.50 The answer.

6.5% of $1500 is $97.50.

In the above example, when " [is pressed, the calculated answer
writes over the percentage rate in the X-register, and the base number
is preserved in the Y-register.

When you pressed 7 () the stack contents were changed...

...from this... ...to this.
T | o0.00 T 0.00
Z 0.00 Z 0.00
Y 1500.00 Y 1500.00
X 65 X 9750

Since the purchase price is now in the Y-register and the amount of
tax is in the X-register, the total amount can be obtained by simply
adding:

Press Display
Total of price and sales

tax combined.

Percent of Change

The (221 (percent of change) key is a two-number function that gives
the percent increase or decrease from Y to X. To find the percent
of change:

1. Key in the base number (usually, the number that happens
first in time).

2. Press @ED.

3. Key in the second number.

4. Press

92 Function Keys

Example: Find the percent of increase of your rent 10 years ago
($70 per month) to today ($240 per month).

Press Display

70

240 B (%cH] 242.86 Percent increase.
The formula used is:———(X — ;:) LLUNS %CH.

Trigonometric Functions

Your HP-67 provides you with six trigonometric functions, which
operate in decimal degrees, radians, or grads. You can easily convert
angles from decimal degrees to radians or vice versa, and you can
convert between decimal degrees, and degrees, minutes, seconds.
You can also add angles specified in degrees, minutes, seconds
directly, without converting them to decimal.

There exist several specific argument values for which sin~ ! (and
to a lesser degree, cos™!) are in error to an extent that could be
excessive for some applications. However, these arguments are
very small in magnitude and thus infrequently encountered by
most users.

The six specific arguments affected and the resulting errors for
sin~! x are: x = 0.000003000 (0.6%), 0.000004000 (2.5%),
0.000005000 (4.09%), 0.000006000 (7.0°), 0.000007000 (8.0%),
0.000008000 (11.59%). No other values are affected. Notice that
changing the magnitude of the above arguments by as little as
+ 0.000000001 eliminates the larger-than-normal error.

Degrees/Radians Conversions

The £R) and (03 functions are used to convert angles between degrees
and radians. To convert an angle specified in degrees to radians,
key in the angle and press B} ER). For example, to change 45°
to radians:

Press Display

45
(o I)

Radians.

Function Keys 93

To convert an angle specified in radians to decimal degrees, key
in the angle and press [/ (03. For example, to convert 4 radians to
decimal degrees:

Press Display
4
3 229.18 Decimal degrees.

Trigonometric Modes

For trigonometric functions, angles can be assumed by the calculator
to be in decimal degrees, radians, or grads. When the HP-67 is first
turned ON, it ‘‘wakes up’’ with angles assumed to be in decimal
degrees. To select radians mode, press [[RAD] (radians) before using
a trigonometric function. To select grads mode, press(() (grads).
To select decimal degrees again, press [(degrees).

Note: 360 degrees = 400 grads = 2 radians

Functions
The six trigonometric functions provided by the calculator are:

(EX] (sine)

B (7] (arc sine)
€23 (cosine)

B €557 (arc cosine)
(29 (tangent)

B [(arc tangent)

Each trigonometric function assumes that angles are in decimal
degrees, radians, or grads, depending upon the trigonometric mode
selected.

All trigonometric functions are one-number functions, so to use them,
you key in the number, then press the function key(s).

Example: Find the cosine of 35°.
Press Display
35 35

=3

The HP-67 ‘‘woke up’’ in degrees mode when you first turned it ON.

Example 2: Find the arc sine in radians of .964.

Press Display
(h | Selects radians mode.
(Results remain from
previous example.)
.964 .964
(EED) 1.30 Radians.

Example 3: Find the tangent of 43.66 grads.
Press Display

Selects grads mode.
(Results remain from
previous example.)

43.66 Grads.
@

Hours, Minutes, Seconds/Decimal Hours
Conversions

Using the HP-67, you can change time specified in decimal hours
to hours, minutes, seconds format by using the CE¥E] (to hours,
minutes, seconds) key; you can also change from hours, minutes,
seconds to decimal hours by using the (3] (to hours) key.

When a time is displayed or printed in hours, minutes, seconds
format, the digits specifying hours occur to the left of the decimal
point, while the digits specifying minutes, seconds, and fractions of
seconds occur to the right of the decimal point.

—— —— —

Hours T T Tenths of a Second
Minutes Seconds

To convert from decimal hours to hours, minutes, seconds, simply
key in the value for decimal hours and press (EF¥S). For example,
to change 21.57 hours to hours, minutes, seconds:

Press Display
21.57 Key in the decimal time.

33 4 [21.5700] Reset display format to
FIX 4.
(o] This is 21 hours, 34

minutes, 12 seconds.

Notice that the display is not automatically switched to show you
more than the normal two digits after the decimal point (FIX 2),
so to see the digits for seconds, you had to reset the display format
to FIX 4.

To convert from hours, minutes, seconds to decimal hours, simply
key in the value for hours, minutes, seconds in that format and press

(3. For example, to convert 132 hours, 43 minutes, and 29.33
seconds to its decimal degree equivalent:

Press Display

132.432933 This is 132 hours, 43

minutes, 29.33 seconds.

O 132.7248 This is 132.7248 hours.
(FIX 4 display remains
specified from previous
example.)

Using the (CH95]) and (O operations, you can also convert angles
specified in decimal degrees to degrees, minutes, seconds, and vice
versa. The format for degrees, minutes, seconds is the same as for
hours, minutes, seconds.

Example: Convert 42.57 decimal degrees to degrees, minutes,
seconds.

Press Display

42.57 Key in the angle.

B Cowvs) This means 42°34"12".
(Display assumes FIX 4
notation remains spec-
ified from previous
example.)

96 Function Keys

Example: Convert 38°8'56.7" to its decimal equivalent.

Press Display
38.08567 Key in the angle.
3 Answer in decimal

degrees. (FIX 4 display
specified from previous
examples.)

Notice that you had to key in 8’ as 08.

Adding and Subtracting Time and Angles

To add or subtract decimal hours, merely key in the numbers for the
decimal hours and press E3 or @ . To add hours, minutes, seconds,
use the (add hours, minutes, seconds) key.

Likewise, angles specified in degrees, minutes, seconds are added by

pressing [(HMmS+],

Example: Find the sum of 45 hours, 10 minutes, 50.76 seconds and
24 hours, 49 minutes, 10.95 seconds.

Press Display

45.105076

FIX 4 notation from
previous example.

24.491095

6B 6

To subtract a time specified in hours, minutes, seconds from another
(or to subtract an angle specified in degrees, minutes, seconds),
simply use the i key to make the second time (or angle) negative,
then add with the key.

Function Keys 97

Example: Subtract 142.78° from 312°32'17", with the answer in
degrees, minutes, seconds format.

Press Display

312.3217
FIX 6 from previous

example.
142.78 @ Decimal degrees.
(o] To degrees, minutes,
seconds.
CHS Angle made negative.
This is 169°45'29".
= 2 Display mode reset to
FIX 2.

In the HP-67, trigonometric functions assume angles in decimal
degrees, decimal radians, or decimal grads, so if you want to compute
any trigonometric functions of an angle given in degrees, minutes,
and seconds, you must first convert the angle to decimal degrees.

Example: Lovesick sailor Oscar
Odysseus dwells on the island of
Tristan da Cunha (37°03°S, 12°18'W),
and his sweetheart, Penelope, lives on
the nearest island. Unfortunately for
the course of true love, however,
Tristan da Cunha is the most isolated
inhabited spot in the world. If Penelope
lives on the island of St. Helena
(15°55'S, 5°43'W), use the following
formula to calculate the great circle distance that Odysseus must sail
in order to court her.

Distance = cos™! [sin (LAT;) sin (LAT,) + cos (LAT;) cos (LAT,)
cos (LNGq — LNGy)] X 60.

Where LAT; and LNG; = latitude and longitude of the source
(Tristan da Cunha).

LAT,4 and LNG, =latitude and longitude of the destination.

98 Function Kevs

Solution: Convert all degrees, minutes, seconds entries into decimal

degrees as you key them in. The equation for the great circle distance

from Tristan da Cunha to the nearest inhabited land is:

Distance = cos™! [sin (37°03") sin (15°55’) + cos (37°03")
cos (15°55") cos (5°43’ — 12°18")] X 60

Press Display
(000 | Selects degrees mode.

(Display assumes no
results remain from
previous examples.)

54300 5.72
RIBBIDSE -6.58

YT
15550 @ ED 1
(096 |
x] (o9 |
37.030 @3 0

00

(] Logo]
a 0.76 |
omCE [os0 |
8 1 0 GO Lo2z]
(]
0.93
B (Cos) 21.92
60 23 i515,41 Distance in nautical

miles that Odysseus must
sail to visit Penelope.

Polar/Rectangular Coordinate Conversion

Two functions are provided for polar/rectangular coordinate
conversions. Angle 6 is assumed in decimal degrees, radians, or
grads, depending upon the trigonometric mode first selected by

(DEG, (RAD), or (GRD) .

In the HP-67, angle 6 is represented in the following manner:

Function Keys

99

To convert from rectangular x, y coordinates to polar r, 6 coordinates
(magnitude and angle, respectively):

—

Key in the y-coordinate.

2. Press to raise the y-coordinate value to the Y-register of
the stack.

3. Key in the x-coordinate.

4. Press [(to polar). Magnitude r then appears in the
X-register and angle 0 is placed in the Y-register. (To display
the value for 8, you can press (xx3).)

The following diagram shows how the stack contents change when
you press [}

X < N -

y-coordinate

x-coordinate

angle 6

magnitude r

X < N-H

100

Function Keys

To convert from polar r, 6 coordinates to rectangular x, y
coordinates:

. Key in the value for the angle 6.
. Press to raise the value for 6 to the Y-register of the

stack.

Key in the value for magnitude r.

Press [(to rectangular). The x-coordinate then appears
in the displayed X-register and the y-coordinate is placed in the
Y-register. (To display the value for the y-coordinate, you can
press)

The following diagram shows how the stack contents change when
you press |

T ot ot
¥4 oz 7 z

Y angle6 — —» | y-coordinate
X [magnitude r| —» o _> x-coordinaf%

T
Y4
Y
X

After you have pressed [() or £} (7], you can use the key
to bring the calculated angle 6 or the calculated y-coordinate into the
X-register for viewing or further calculation.

Example 1: Convert rectangular coordinates (4, 3) to polar form with
the angle expressed in radians.

Press Display

3 3.00

4
(o] 5.00

0.64

Function Keys 101

Radians mode selected.
(Display assumes no re-
sults remain from
previous examples.)
y-coordinate entered into
the Y-register.
x-coordinate keyed into
the X-register.
Magnitude r.

Angle 0 in radians.

Example 2: Convert polar coordinates (8, 120 grads) to rectangular

coordinates.

Press

120 EIED
8
0 EJ

Grads mode selected.
(Note that results can
remain from previous
examples.)

Angle 6 entered into the
Y-register.

Magnitude r placed in
displayed X-register.
x-coordinate.
y-coordinate brought
into displayed X-register.

102 Function Keys

Example 3: Engineer Tobias Slothrop has determined that in the RC
circuit shown above, the total impedance is 77.8 ohms and voltage
lags current by 36.5°. What are the values of resistance R and
capacitive reactance X, in the circuit?

Method: Draw a vector diagram using total impedance 77.8 ohms for
polar magnitude r and —36.5° for angle 6. When the values are
converted to rectangular coordinates, the x-coordinate value yields
resistance R in ohms, and the y-coordinate value yields reactance X,
in ohms.

Solution:
Press Display
Degrees mode selected.

(Note that results can
remain from previous
examples.)

Function Keys 103

36.5
7738

(i) Resistance R in ohms.
Xy Reactance X., 46.28

ohms, available in
displayed X-register.

Logarithmic and Exponential Functions

Logarithms
The HP-67 computes both natural and common logarithms as well
as their inverse functions (antilogarithms):

(@ is loge (natural log). It takes the log of the value in the
X-register to base e (2.718...).
8 is antilog, (natural antilog). It raisese (2.718...) to the power
of the value in X-register. (To display the value of e, press
18 @)
(=3) is log,o (common log). It computes the log of the value in the
X register to base 10.
9] is antilog,;o (common antilog). It raises 10 to the power of the
value in the X-register.

Example 1: The 1906 San Francisco earthquake, with a magnitude
of 8.25 on the Richter Scale is estimated to be 105 times greater
than the Nicaragua quake of 1972. What would be the magnitude
of the latter on the Richter Scale? The equation is:

R, =R, — log xz = 8.25 — (log 1(1’5)

1

Solution:

Press Display

8.25

1051 @3

e Rating on Richter scale.

104 Function Keys

Example 2: Having lost most of his
equipment in a blinding snowstorm,
ace explorer Jason Quarmorte is using
an ordinary barometer as an altimeter.
After measuring the sea level pressure
(30 inches of mercury) he climbs until
the barometer indicates 9.4 inches of
mercury. Although the exact relation-
ship of pressure and altitude is a
function of many factors, Quarmorte :
knows that an approximation is given by the formula:

Altitude (feet) = 25,000 In . 25,000 In 30
Pressure

Where is Jason Quarmorte?
Solution:
Press Display
30
941

o
25000
[x] Altitude in feet.

Quarmorte is probably near the summit of Mount Everest (29,028
feet).

Raising Numbers to Powers

The @ key is used to raise numbers to powers. Using [¥ permits
you to raise a positive real number to any real power—that is, the
power may be positive or negative, and it may be an integer, a
fraction, or a mixed number. (9 also permits you to raise any
negative real number to the power of any integer (within the cal-
culating range of the HP-67, of course).

Function Keys 105

For example, to calculate 2° (thatis,2 X2 X2 X2 X2 X2 X2 X2
X 2):

Press Display
2 EHED 9
R

To calculate 81:2%67;

Press Display

3 EWED
12567 @D
)

To calculate (—2.5)%:

Press Display
2.5ED
5 5.

(%) [-97.66

In conjunction with (%], %) provides a simple way to extract roots.
For example, find the cube root of 5. (This is equivalent to 5/3.)

Press Display
SEmED
3 Reciprocal of 3.

() Cube root of 5.

106 Function Keys

Example: In a rather overoptimistic
effort to break the speed of sound, high-
flying pilot Ike Daedalus cranks open
the throttle on his surplus Hawker
Siddeley Harrier aircraft. From his
instruments he reads a pressure altitude
(PALT) of 25,500 feet with a calibrat-
ed airspeed (CAS) of 350 knots. What
is the flight mach number

_ _speed of aircraft
speed of sound

if the following formula is applicable?

e [T Ao =3y

Method: The most efficient place to begin work on this problem is at
the innermost set of brackets. So begin by solving for the quantity

2
[350] and proceed outward from there.

661.5
Press Display
350
661.5E
(9] Square of bracketed
quantity.
20
1 [706]
3.50 09 1.21
18 0.21 Contents of left-hand set

of brackets are in the
stack.

Function Keys 107

1

6.875 E3 EB 6

25500 B3

=]

52656 EO R Contents of right-hand set
of brackets are in the
stack.

a

!

2860

18

5@

= Mach number of

Daedalus’ Harrier.

In working through complex equations like the one containing six
levels of parentheses above, you really appreciate the value of the
Hewlett-Packard logic system. Because you calculate one step at a
time, you don’t get ‘‘lost’”” within the problem. You see every
intermediate result, and you emerge from the calculation confident of
your final answer.

Statistical Functions

Accumulations

Pressing the key automatically gives you several different sums
and products of the values in the X- and Y-registers at once. In order to
make these values accessible for sophisticated statistics problems,
they are automatically placed by the calculator into secondary storage
registers Rgy through Rgy. The only time that information is automati-
cally accumulated in the storage registers is when B3 (or [£5) is
used. Before you begin any calculations using the B8 key, you should

first clear the protected secondary storage registers by pressing
followed by [(F=5).

108 Function Keys

When you key a number into the display and press the key,
each of the following operations is performed:

1. The number that you keyed into the X-register is added to the
contents of secondary storage register Rg,; (2x — Rg,).

2. The square of the number that you keyed into the X-register
is added to the contents of secondary storage register Rgs;
(2x* = Rgs).

3. The number in the Y-register of the stack is added to the contents
of secondary storage register Rgg; (2y — Rgg).

4. The square of the number in the Y-register of the stack is added
to the contents of secondary storage register Rg;; (Zy? — Rg;,).

5. The number that you keyed into the X-register is multiplied by
the contents of the Y-register, and the product added to the
contents of storage register Rgg; (2xy — Rgg).

6. The number 1 is added to storage register Rgy, and the total
number in Rgy then writes over the number in the displayed

X-register of the stack. The stack does not lift; X
& [h< R,,]

The number that you keyed into the X-register is preserved in the
LAST X register, while the number in the stack Y-register remains
in the Y-register.

Thus, when you press B3, the stack contents are changed...

...from this... ...to this.
T t T t
Y4 z Zz z
Y |y Y vy
X X X | n

Function Keys 109

... and the storage register contents are changed...

...from this... ...to this.
Addressable Storage Registers Addressable Storage Registers
Primary Registers Primary Registers
O | O I
R 1 R[]
R 1] R]
R] —
R] R]
RO R
Protected Protected
Secondary Registers Secondary Registers

Rs [] Rso|] R, [] Rss [0]
Rs Rss Rg [] Rse [31y 7]
R, Rs, RO 1 Ry
Re {] Rss(] Re L] Rse [2y]
R, |] R J R [Rs: (X
R [] R] R Rs. [3x
R 1 R[] R, [I Ral I
R, [—l Hsz [] R; L___:l Rs, ;_]
R, [] Rsi[] R, Rs.
Ro [] Rsof] Ro [1 Reof J

Before you begin accumulating results in secondary storage registers
Rs4 through Rgg using the key, you should first ensure that the
contents of these registers have been cleared to zero by pressing

(CCEEC] followed by [).

Note: Unlike storage register arithmetic,the function
allows overflows (i.e., numbers whose magnitudes are

greater than 9.999999999 x 10%) in storage registers Rg,
through Rse without registering in the
display.

After you have accumulated these products and sums using the
key, they remain in the secondary storage registers, where they are
used to compute mean and standard deviation using the (£] and
functions.

110 Function Keys

To use only the 3x and 3y that you have accumulated in the secondary
storage registers, you can press followed by £3. This brings 2x
into the displayed X-register and 2y into the Y-register, overwriting
the contents of those two stack registers. The stack does not lift. (This
feature is particularly useful when performing vector arithmetic, like
that illustrated on pages 118-120.)

To use any of the summations individually, simply exchange the
contents of the secondary storage registers with the primary registers
by pressing (Z:); then recall the desired summation by pressing
followed by the number key of the register address.

Example: Find 2x, 2x2, 3y, 3y?, and 3xy for the paired values of
x and y listed below.

yl7 5 9
X 5 3 8
Press Display

(cLred) @ (3) Ensures that storage
registers Rg4 through Rgg
contain all zeros initially.
(Display assumes no
results remain from
previous example.)

7 7.00

5 1.00 First pair is accumulated;
n=1.

5

3 Second pair is accumu-
lated; n = 2.

9 (oo]

8 3.00 Third pair is accumu-
lated; n = 3.

3 (300] Brings contents of

secondary registers into
primary registers.

[8 4 Sum of x values from
register Ry.

5 Sum of squares of x
values from register R;.

e 6 Sum of y values from
register Rg.

T 7 Sum of squares of y
values from register R;.

RCL | Sum of products of x and
y values from register Rg.

reL Y 3.00 Number of entries (n = 3).

By using the (F:5) function in conjunction with the B3 key, you can
actually maintain two complete sets of products and sums in your

HP-67.

Mean

The (Z) (mean) key is the key you use to calculate the mean (arithmetic
average) of data accumulated in secondary registers Rg,, Rgg, and
Rgy. When you press 7 (3):

1. The mean (X)of x is calculated using the data accumulated in
register Rg; (2x) and Rgy (n) according to the formula:

f=_L
n

n
Xi (That is,
i=1

RS4 —
=X
RSQ)

The resultant value for X is seen in the displayed X-register.

. The mean (y) of y is calculated using the data accumulated in
register Rgg (2y) and register Rgg (n) according to the formula:

S9

n
—_ 1 . Rss .
= . That s, =
y n 2 y (atis R y)

The resultant value for y is available in the Y-register of the
stack .

112 Function Keys

Although you could place data in the accumulation registers manually
using the (=) and keys, the easiest way to accumulate the
required data in the secondary storage registers is through the use of
the key as described above.

Example: Below is a chart of daily
high and low temperatures for a winter
week in Fairbanks, Alaska. What are
the average high and low temperatures
for the week selected?

CRIEERINE= =TS
= RUUERT= =l

Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

High [6 [11 [14 [12 | 5 [-2]-9
Low -22 k-w -5 | -9 | -24 |-29 |-35
Press Display

(cLreq) @ (=9 Ensures that secondary

registers contain all zeros
initially. (Display
assumes no results re-
main from previous
calculations.)

6 22
1.00 Number of data pairs

(n) is now 1.
11 17
2.00 Number of data pairs

(n) is now 2.
14 15

3.00
12 EOED 9

5 ENED 24

5.00

2 @B EIED
20 @8 6@
9 @8 EED

35 7.00 Number of data pairs
(n) is now 7.
58} [-21.57 Average low temperature.
[529 Average high
temperature.

The illustration below represents what happens in the stack when you
press | (3. Press | (0 and the contents of the stack registers are
changed...

...from this... ...to this.
T t —_— t T
Z z e . 4 Z
Y y —lost y Y
X X X X

|

[x] LASTX

Standard Deviation

The (5] (standard deviation) key is the key you use to calculate the
standard deviation (a measure of dispersion around the mean) of data
accumulated in secondary storage registers Rg, through Rg,.

When you press £ (5):

1. Sample x standard deviation (sy) is calculated using the data
accumulated in storage registers Rgs (2x?), Rg, (2x), and Rgg
(n) according to the formula:

The resultant value for standard deviation of x (sy) is seen in
the displayed X-register.

114 Function Keys

2. Sample y standard deviation (sy) is calculated using the data
accumulated in storage registers Rg; (2y?), Rgg (2y), and Rgg
(n) according to the formula:

The resultant value for standard deviation of y (sy) is available
in the Y-register of the stack.

Thus, with data first accumulated in secondary storage registers Rg,
through Rgg, when you press [l (5], the contents of the stack registers
are changed...

...from this... ...to this.

T t — t T
z z e z Zz
Y y —lost S, Y
X X sx X

\E LAST X

To use the value for standard deviation of y (sy) simply use the
key to bring that value into the displayed X-register of the stack.

Example: In a recent survey to deter-
mine the age and net worth (in millions ; .
of dollars) of six of the 50 wealthiest i
persons in the United States, the fol- i
lowing data were obtained (sampled).
Calculate the average age and net worth
of the sample, and calculate the
standard deviations for these two sets
of data.

Age | 62

(2]

58 2

Function Key

115

73 84 68

Net Worth | 1200 1500 1450 1950 1000 1750

Press

(CLreq) @ (9)

62 1200 B3

58 1500
62 1450
73 1950
84 1000
68 1750 B3

B
0 &)
a6

Display

1.00

2.00
3.00
4.00
5.00
6.00

1475.00

67.83

347.49

9.52

Ensures that secondary

storage registers used for
accumulations are cleared
to zero initially. (Display
assumes no results remain
from previous examples.)

Number of data pairs
(n)is 1.

Number of data pairs
(n) is 6.

Average value of net
worth.

Average age of the
sample.

Standard deviation (sy)
of net worth of sample.
Standard deviation (s,)
of age of sample.

If the six persons used in the sample were actually the six wealthiest
persons, the data would have to be considered as a population
rather than as a sample. The relationship between sample standard
deviation (s) and the population standard deviation (o) is illustrated
by the following equation.

116 Function Keys

Since n is automatically accumulated in secondary register Rgg when
data is accumulated, it is a simple matter to convert the sample
standard deviations which have already been calculated to population
standard deviations.

If the accumulations are still intact from the previous example in
secondary registers Rg4 through Rgy, you can calculate the population
standard deviations this way:

Press Display
0E Calculate s, and s,.
(B! 9 Recall n.
18 Calculate n — 1.
o B Divide n — 1 by n.
= 8 Population standard
deviation oy.
(h] Brings s, to the
X-register.
0 Recall conversion factor.
8 8.69 Population standard

deviation oy.

Remember that the accumulations must always be stored in the
secondary bank of storage registers. Thus, if you have accumulated
data using and then brought the summations out to the primary
registers for viewing using (7-5), you will have to replace them in
the secondary registers by pressing (F-5) again before pressing (5]
or (5.

Deleting and Correcting Data

If you key in an incorrect value and have not pressed B3, press
and key in the correct value.

If one of the values is changed, or if you discover after you have
pressed the 43 key that one of the values is in error, you can correct
the summations by using the £-] (summation minus) key as follows:

1. Key in incorrect data pair into the X- and Y-registers. (You
can use to return a single incorrect data value to the
displayed X-register.)

Function Keys 117

2. Press [£ to delete the incorrect data.

3. Key in the correct values for x and y. (If one value of an x,
y data pair is incorrect, both values must be deleted and
reentered.)

4. Press B53.

The correct values for mean and standard deviation are now obtainable
by pressing © (5] and B} (5.

For example, suppose the poorer 62-year old member of the sample as
given above were to lose his position as one of the wealthiest persons
because of a series of ill-advised investments in cocoa futures. To
account for the change in data if he were replaced in the sample by
a 21-year old rock musician who is worth 1300 million dollars:

Press Display

= Accumulations replaced

in secondary storage

registers.
62 1200 Data to be replaced.
=3 Number of entries (n)
is now five.
21 1300 [7300. 7] The new data.
Number of entries (n)

is six again.

The new data have been calculated into each of the summations
present in the secondary storage registers. To see the new mean and
standard deviation:

Press Display

A 1491.67 The new average
(mean) worth.
@E The new average (mean)

age available in
X-register for use.

s ja] 333.79 The new standard

deviation for worth.

118 Function Keys

Press Display
The new standard

deviation for age is now
available in X-register
for use.

Vector Arithmetic

You can use your HP-67 to add or subtract vectors by combining the

polar/rectangular conversion functions (the =7) and (<) keys) with the
summation functions (the and [keys).

Example: Grizzled bush pilot Apeneck Sweeney’s converted
Swordfish aircraft has a true air speed of 150 knots and an estimated
heading of 45°. The Swordfish is also being buffeted by a headwind
of 40 knots from a bearing of 25° (or having a heading of 25° + 180°
= 205°). What is the actual ground speed and course of the Swordfish?

Method: The true course vector is equal to the sum of the vectors.
(Notice that North becomes the x-axis so that the problem corresponds
to navigational convention.)

|
150 Knots : 40 Knots

|
|
|
|
|
|
|
|
|
|

Press Display

s
150 150

@

1.00

205 205.00

40 40

2.00

Function Keys 119

Ensures that secondary
registers used for

accumulations are
cleared to zero. (Dis-
play assumes no results
remain from

previous examples.)

0 for 1t vector is entered
to Y-register.

r for 1% vector is keyed
in.

Converted to rectangular
coordinates.

15t vector coordinates
accumulated in storage
registers Rgy and Rgg.

0 for 2" vector is entered
to Y-register.

r for 2" vector is keyed
in.

274 vector is converted to
rectangular coordinates.

2" yector rectangular
coordinates added to
those of 1%t vector.

120 Function Keys

Press Display

Recalls both Rg, and Rgg.

9] Actual ground speed in
knots of the Swordfish.

Course in degrees of the

Swordfish.

Part Two
Programming the HP-67

Section 6

Simple Programming

S

If you read the introduction to this handbook, you have already seen
that by using the programming capability of your HP-67, you can
increase the flexibility of the calculator a hundredfold or more, and
you save hours of time in long computations.

With your HP-67 Programmable Calculator, Hewlett-Packard has
provided you with a Standard Pac, containing 15 programs already
recorded on magnetic cards. You can begin using the programming
power of the HP-67 by simply using any of the cards from the Standard
Pac, or from one of the other Hewlett-Packard pacs in areas like
finance, statistics, mathematics, engineering, or medicine. The grow-
ing list of application pacs is continually being updated and expanded
by Hewlett-Packard, to provide you with a wide variety of software
support.

However, we at Hewlett-Packard cannot possibly anticipate every
problem for which you may want to use your HP-67. In order to get the
most from your calculator, you’ll want to learn how to program the
HP-67 to solve your every problem. This part of the HP-67 Owner’s
Handbook teaches you step-by-step to create simple programs that
will solve complex problems, then introduces you to the many editing
features of the HP-67, and finally gives you a glimpse of just how
sophisticated your programming can become with the HP-67
Programmable Calculator.

Programming your calculator is an extension of its use as a manual
problem-solving machine, so if you haven’t read Part One, Using
Your HP-67 Calculator, you should go back and do so before you
begin programming.

After most of the explanations and examples in this part, you will find
problems to work using your HP-67. These problems are not essential
to your basic understanding of the calculator, and they can be skipped
if you like. But we urge that you work them. They are rarely difficult,
and they have been designed to increase your proficiency, both in the
actual use of the features of your calculator and in creating programs to

123

124 Simple Programming

solve your own problems. If you have trouble with one of the prob-
lems, go back and review the explanations in the text, then tackle it
again.

So that you can apply your own creative flair to the problems, no
solutions are given for them. In programming, any solution that gives
the correct outputs is the right one—there is no one correct program
for any problem. In fact, when you have finished working through this
part, and learned all the capabilities of the HP-67, you may be able to
create programs that will solve many of the problems faster, or in
fewer steps, than we have shown in our illustrations.

Now let’s start programming!

What Is a Program?

A program is nothing more than a series of calculator keystrokes that
you would press to solve a problem manually. The calculator remem-
bers these keystrokes when you key them in, then executes them in
order at the press of a single key. If you want to execute the program
again and again, you have only to press the single key each time.

If you worked through Meet the HP-67 (pages 15-24), you learned
how to create, load, run, and record a simple program to solve for the
area of a sphere. Now look at a more complex program.

Loading a Prerecorded Program

First, set the calculator controls as follows:

ON-OFF switch orr[ll[[[[lon to ON.
W/PRGM-RUN switch werem [ll[[[Irun to RUN.

Now select the Moon Rocket Lander card from the Standard Pac
shipped with your HP-67. Insert side 1 of the card, face up, into the
lower slot provided on the right side of the calculator, and press it into
the slot until the reading mechanism picks it up and propels it out the
left slot. Let go of the card as soon as you feel it begin to be propelled
by the reading mechanism—don’t try to restrain its progress. If the
card does not read properly, the display will show and
you should then press any key on the keyboard to clear the error and
again pass side 1 of the card through the card reader slot. Then insert

the card in the upper slot so that the writing is visible in the window
above the keys marked @ B3 @ B 3.

Simple Programming 125

2.

3. Insert the card in the card window slot.

126 Simple Programming

Some programs are recorded on both sides of a magnetic card, so the
card must be run through the card reading mechanism twice—once on
each side. If a second side of a magnetic card must be read, the
calculator prompts you by displaying [Crd ____|after you have read
the first side. However, the Moon Rocket Lander program is fairly
short, so the complete program has been recorded twice, once on
each side of this factory-prerecorded card. You can easily see when a
card has been read completely because the calculator will then display
the original contents of the X-register. The Moon Rocket Lander
program has now been loaded into the calculator and you can try to
“‘land’’ the calculator on the moon without ‘‘crashing.’’

The Game. The game simulates a
rocket attempting to land on the moon,
with you as the pilot. As the game be- §
gins, you are descending at a velocity of #
50 ft/sec from a height of 500 feet.
Velocity and altitude are shown in a
combined display as -50.500, the al-
titude appearing to the right of the
decimal point and the velocity to the
left. The negative sign on the velocity
indicates downward motion. As the game begins, you have 60
units of rocket fuel.

The object of the game is to control your descent by keying in fuel
“‘burns’’ so that when you reach the surface of the moon (altitude 0),
your velocity is also zero and you settle down gently into the powdery
moon dust.

When you press B3, the game begins. The velocity and altitude are
shown in the calculator display. Then the number of remaining fuel
units are shown, and the display begins a countdown to burn time. The
display counts ‘“3,”” “2,”” *‘1,”” “‘0.”” When the countdown reaches
zero, you have one second to key in a fuel burn. The best choices for
fuel burns are digits of 1 through 9. A zero burn, which is very
common, is accomplished by doing nothing.

After each burn, the calculator display will show first the new velocity
and altitude, then the remaining fuel units, then will count down to

zero for you to key in another burn. This sequence is repeated until
you successfully land (when the display will show you blinking
zeros), or you smash into the lunar surface (when the display shows
you the blinking crash velocity).

If you attempt to key in a fuel burn during any time other than the
one-second ‘‘fire window,’’ the rocket engine will shut off and you
will have to restart it by pressing 3. Restarting automatically uses up
five units of fuel and gives no thrust.

So press (¥ now and try to land on the moon with your HP-67.

Stopping a Running Program

After you have successfully landed on the moon (or even if you have
crashed), you can stop the running program by pressing or any
key on the keyboard. When you press any key on the keyboard while a
program is running, the program immediately stops and displays the
current contents of the X-register. The key function is not executed.

Looking at Program Memory

As you may remember from the program you created, loaded, exe-
cuted, and recorded onto a magnetic card in Meet the HP-67 at the
beginning of this handbook, a program is nothing more than a series of
keystrokes you would press to solve a problem manually. Whether
you load these keystrokes into the calculator from the keyboard, as
you did then, or from a magnetic card, as when you loaded the Moon
Rocket Lander program, the keystrokes are stored in a part of the
calculator known as program memory. When you slide the
W/PRGM-RUN switch to W/PRGM, you can examine the contents of
program memory, one step at a time.

First, press (& (<) 000 to return the calculator to the beginning of
program memory. Then slide the W/PRGM-RUN switch
wrrGM [[[HMlruN to W/PRGM. The display should show

Program memory consists of 224 “‘steps,’’ which are numbered from
001 to 224, together with a top-of-memory marker, step 000. Program
memory is separate from the stack and storage registers.

128 Simple Programming

000 <«— Top-of-Memory Marker
001
002
003

Program Memory

222
223
224

With the W/PRGM-RUN switch set to W/PRGM, the number that you
see on the left side of the display indicates the step number of program
memory to which the calculator is set. You should be set at step 000,
indicated by a display of | 000 |. Now we’ll use the ES (single-
step) key to examine the next step of program memory. lets you
step through program memory, one step at a time.

Press Dispiay

SST 001 31 25 11

The calculator is now set to step 001 of program memory, as indicated
by the number 001 that you see on the left side of the display. The other
numbers in the display are two-digit keycodes for the keystrokes that
have been loaded into that step of program memory.

Each step of program memory can ‘‘remember’’ a single operation,
whether that operation consists of one, two, or three keystrokes. Thus,
one step of program memory might contain a single-keystroke opera-
tion like 8, while another step of program memory could contain a
two-keystroke operation, like 6. Step 001 of program memory
currently contains an operation that requires three keystrokes, [(=)

Simple Programming 129

Keycodes

Each key on the calculator is identified by a two-digit keycode. When
the W/PRGM-RUN switch is set to W/PRGM, the keycodes for the
keystrokes loaded into the current step of program memory appear on
the right side of the display. For example, the first keycode, 31,
identifies the 37 row of the keyboard, 15! key in that row. By counting
down three rows and looking at the first key on the calculator
keyboard, you can see that it is the |~ key.

ON W/ PRGM

MOON ROCKET LANDER

CNTRL RESTART

319 row -

15t key
The second keycode, 25, then refers to the 2" row, 5™ key in that row;
and since the previous keycode was for the | prefix key, the function
selected by the keycode for the 2" row, 5" key in that row is (2. The
last keycode is 11; that is, the 15 row, 15! key in that row, the @ key.
So the complete operation loaded into step 001 is ©» () .

Using this handy matrix system, you can easily identify any key by its
keycode in the display. Remember, always count from the top down
and from left to right. Each key, no matter how large, counts as one.
For convenience, digit keys are identified by keycodes 00 through 09,
although prefixed functions associated with digit keys are identified
by the matrix address. A step of program memory cannot contain more
than a decimal point or a single digit of a number. For example, if you
press again, you can see that the number 5 is loaded into step 002
of program memory.

130 Simple Programming
Press Display

SST 002 05

Pressing B3 twice more shows you that zeros have been loaded into
steps 003 and 004:

Press Display
SST 003 00
SST 004 00

Pressing E& again shows you that the operation loaded into step 005

is @@ 6:

Press Display

SST 005 33 06

Thus, in order to load this portion of the program into the calculator
from the keyboard, you would have pressed the following keys:

(] A
500

88 6

Remember that each step of program memory can hold a complete
operation, no matter whether the operation consists of one (e.g., &),
two (e.g., 03 (@), or three (e.g., B3 9) keystrokes. You can see
that the 224 steps of program memory can actually hold many more
than 224 keystrokes.

In addition to the 224 steps of program memory in which you can load
keystrokes for programs, program memory also contains step 000. No
functions can be loaded into step 000, and in fact, step 000 serves
only as a kind of marker within memory, a convenient ‘‘starting
point’’ when you begin loading a program.

Any function on the keyboard can be loaded into program memory
except the five default functions, and certain editing functions like
SST

Default Functions

The default functions, >) B, that are found above
the 3 through [@ keys on the keyboard have been placed in the
calculator to enhance its usability in manual calculations. As soon as
you load even a single operation into program memory, whether from
the keyboard or from a magnetic card, the default functions are lost,
and the top row keys, [§ through{@ , are used in programming. Since
the five default functions are also duplicated on the keyboard as
prefixed functions, you can still utilize those operations in a program.

In actuality, if you press one of the top row keys in
W/PRGM mode when no operations have been loaded into
program memory, the prefixed function associated with
that default function is loaded. After that, however, since an
operation has been loaded into program memory, the de-
fault functions are lost. In this handbook, we have always
used prefixed functions when programming, and we urge
that you do the same, reserving the default functions for
manual operation.

Default functions are restored when the calculator is turned OFF then
ON, or when program memory is cleared using "/ [22C0).

Problems

1. What would be the keycodes for the following operations: ,
(Gro), (3 (Fmss), 17

2. What operations are identified by the following keycodes: 41,
31 63, 35 62, 33 51 00?

3. How many steps of program memory would be required to load
the following sections of programs?
a. 2 3
b. 10 6 683
c. I00B@ 250 A2 2 OBA
4. What keystroke(s) would you load into a program to perform an

x exchange y? (That is, to exchange the contents of the
X-register with those of the Y-register.)

132 Simple Programming
Clearing a Program

When you ran the magnetic card containing the Moon Rocket Lander
program through the card reader with the W/PRGM-RUN switch set to
RUN, the program was copied from the card into program memory in
the calculator. Before you can key in a program, you will first want to
clear, or erase, the Moon Rocket Lander program from the cal-
culator’s program memory. You can clear a program in any of three
ways.

To clear a program from the calculator, you can either:

1. Press €S9 with the W/PRGM-RUN switch
wipRGM [T RuUN set to W/PRGM. This replaces whatever in-
structions are in program memory with instructions. In
W/PRGM mode, " CL7507) also specifies (7] 2 display mode,
[DEG) trigonometric mode, clears all flags, and restores the de-
fault functions to the top row keys. (A (R/S] instruction encoun-
tered in a program stops the execution of that program. A flag is
a status indicator within a program. More about these later.) The
stack and storage register contents remain intact when

557 is pressed.

2. Pass another magnetic card containing a program through the
card reader with the W/PRGM-RUN switch wrrem [l run
set to RUN. This replaces whatever instructions are contained
in the calculator’s program memory with the instructions for the
new program. (Reading a blank card does not alter the contents

of program memory, and the calculator displays[Error |

to indicate that the card has not been read.)

3. Turn the HP-67 OFF, then ON. This replaces whatever instruc-
tions are in program memory with instructions.

Now you are going to load your own program into the calculator from
the keyboard, so to first clear the HP-67 of the previous program:

Slide the W/PRGM-RUN switch werem[[[[IlllRUN to
W/PRGM.

Press [(CC501) to clear program memory. (This also sets the
calculator to step 000 of program memory.)

Simple Programming 133

Creating Your Own Program

In Meet the HP-67, at the beginning of this handbook, you created,
loaded, ran, and recorded a program that solved for the surface area of
a sphere, given the diameter of that sphere. Now let’s create, load, and
run another program to show you how to use some of the other features
of the HP-67.

If you wanted to use the HP-67 to manually calculate the area of a
circle using the formula A = 7r? you could first key in the radius r,
then square it by pressing B} (7). Next you would summon the
quantity pi into the display by pressing @ (@. Finally you would
multiply the squared radius and the quantity pi together by pressing
8.

Remember that aprogram to solve a problem is nothing more than the
keystrokes you would press to solve the problem manually. Thus, in
order to create a program for the HP-67 that will solve for the area of
any circle, you use the same keys you pressed to solve the problem
manually.

The keys that you used to solve for area of a circle according to the
formula A = r2m are:

o JES)
0o
(x|

You will load these keystrokes into program memory. In addition,
your program will contain two other operations, (0 and [RTN].

The Beginning of a Program

To define the beginning of a program you should use an 3
(label) instruction followed by one of the letter keys (I3, B3, &, & or
B3) or B (L2 followed by (3 through (). The use of labels permits
you to have several different programs or parts of programs loaded
into the calculator at any time, and to run them in the order you choose.

The digit keys ((0) through(g)), when prefaced by [(2], can also be
used to define the beginning of a program. However, since you must
use (=3 () from the keyboard if you want to select and execute
that program, (2] (0] through (2] (8] are usually reserved for defin-
ing routines—that is, parts of larger programs.

134 e Proaramn

Ending a Program

To define the end of a program, you should use an B([RTN) (return)
instruction. When the calculator is executing a program and encoun-
ters a instruction in program memory, it stops (unless executed
as part of a subroutine—more about subroutines later). For example,
if the calculator were executing a program that had begun with (53
@, when it encountered [J(RTN), it would stop. Another instruction
that will cause a running program to stop is (R/S]. When a running
program executes a (R/S] instruction in program memory, it stops just
as it does when it executes [RTN]. Good programming practice,
however, dictates that you normally use [J(RTN) rather than to
define the end of your program; this is because also sets the
calculator back to step 000 of program memory.

The Complete Program

The complete program to solve for the area of any circle given its
radius is now:

([A | Assigns name to and defines beginning of program.
[9 [Fd) Squares the radius.
[h |E3] Summons pi into the display.
[| Multiplies r2 by 7 and displays the answer.
b JGRDY) Defines the end of and stops the program.

Loading a Program

You load a program into the calculator in either of two ways:

1. By passing a magnetic card containing program instructions
through the card reader with the W/PRGM-RUN switch
wiPRGM [l RuN set to RUN.

2. By setting the W/PRGM-RUN switch wrram [[[[HllRuN to
W/PRGM (program) and pressing the keys from the keyboard in
the natural order you would press them to solve a problem
manually.

Since we do not have a magnetic card that contains the program we
have written to solve for the area of a circle, we will use this second
method to load our program.

To load a program from the keyboard, simply slide the W/PRGM-
RUN switch weram [[[[JlllrRuNn to W/PRGM (program). When the
W/PRGM-RUN switch is in the W/PRGM position, the functions and
operations that are normally executed when you press the keys are not
executed. Instead, they are stored in program memory for later execu-
tion. All operations on the keyboard except five can be loaded into
program memory for later execution. The five operations that cannot
be loaded in as part of a program are:

), @ est), 63,0 oe), B O @ @) @

These five operations are used to help you load, edit, and modify your
programs in the calculator.

Naturally, the five default keys cannot be loaded into
program memory, either. However, these keys are dupli-
cated by prefixed keys that can be loaded. Thus, although
you cannot load [E& . you can load the (h] operation,
etc.

All other functions when pressed with the W/PRGM-RUN switch
wiprGM [[[IIRUN in W/PRGM mode are loaded into the calculator as
program instructions to be executed later.

So if you have not already done so:

1. Slide the W/PRGM-RUN switch wrraM[[[IlllruN to
W/PRGM.

2. Press ' 2501 to clear program memory of any previous
programs and to reset the calculator to the top of program
memory.

136 Simple Programming

You can tell that the calculator is at the top of program memory
because the digits appear at the left of the display. The
digits appearing at the left of the display with the W/PRGM-RUN
switch wprem [[[[IllRuN set to W/PRGM indicate the program mem-
ory step number being shown at any time.

The keys that you must press to key in the program for the area of a
circle are:

ENY 4 |
(o JF3)
[NG
a

Press the first key, [, of the program.

Press Display

You can see that the display of program memory has not changed.
Now press the second and third keys of the program.

Press Display
@
(A] 001 31 25 11

When the step number (001) of program memory appears on the left of
the display, it indicates that a complete operation has been loaded into
that step. As you can see from the keycodes present on the right side of
the display, the complete operation is |7 (keycode 31), (5] (keycode
25), B3 (keycode 11). Nothing is loaded into program memory until a
complete operation (whether 1, 2, or 3 keystrokes) has been specified.

Now load the remainder of the program by pressing the keys. Observe
the program memory step numbers and keycodes.

Simple Programming 137

Press Display

(9] 002 32 54|
003 35 73]
(X} o004 71
005 35 22

The program for solving the area of a circle given its radius is now
loaded into program memory of the HP-67. Notice that nothing could
be loaded into the top-of-memory marker, step 000.

Running a Program

To run a program, you have only to slide the W/PRGM-RUN switch to
RUN, key in any ‘‘unknown’’ data that is required, and press the letter
key (I3 through 3, (7 (3 through " (3) that labels your program.

For example, to use the program now in the calculator to solve for
circles with radii of 3 inches, 6 meters, and 9 miles:

First, slide the W/PRGM-RUN switch werem lll[[lIrun to RUN.
Press Display

38 28.27 | Square inches.
6D 113.10 | Square meters
LA 254.47 Square miles.

Now let’s see how the HP-67 executed this program.

Searching for a Label

When you switched the W/PRGM-RUN switch wrram lll[[[Jrun to
RUN, the calculator was set at step 005 of program memory, the last
step you had filled with an instruction when you were loading the
program. When you pressed the Ekey, the calculator began search-
ing sequentially downward through program memory, beginning with
that step 005, for a (50 Binstruction. When the calculator searches,
it does not execute instructions.

The calculator reached the last step of program memory, step 224,
without encountering an (=] B instruction. It then passed
step 000 again and continued searching sequentially through program
memory for a((]) Binstruction. Only when the calculator found an

(0 Dinstruction in step 001 did it begin executing instructions.

38
Executing Instructions

When the calculator found the 7 [(20) [instruction in step 001, it
ceased searching and began executing instructions. The calculator
executes instructions in exactly the order you keyed them in, perform-
ing the £} (X operation in step 002 first, then @ (™) as in step 003,
etc., until it executes an [(RTN) instruction or a (runlstop)
instruction. Since an [instruction is executed in step 005, the
calculator stops there and displays the contents of the X-register. (To
see the next step number of program memory after the one at which the
calculator has stopped, you can briefly switch the W/PRGM-RUN
switch weram [[[Illrun to W/PRGM.)

If you key in a new value for the radius of a circle in RUN mode and
press [J, the HP-67 repeats this procedure. It searches sequentially
downward through program memory until it encounters a (50) 3
instruction, then sequentially executes the instructions contained in
the next steps of program memory until it executes an{lJ (RTN] or a
instruction.

You can see that it is possible to have many different programs or parts
of a program loaded in the HP-67 at any time. You can run any one of
these programs by pressing the letter key (£§ through @, @
through 7 (2J) that corresponds with its label.

It is also possible to have several different programs or routines
defined by the same label. For example, suppose you had three
programs in your HP-67 that were defined by " ((20) 8. When you
pressed [@, the calculator would search sequentially through program
memory from wherever it was located until it encountered the first
(C20 @ instruction. The HP-67 would then execute instructions until it
executed a ora instruction and stopped. When you pressed
[again, the calculator would resume searching sequentially from the
RTN) or (R/S]) through program memory until it encountered the second

((20) @ instruction, whereupon it would execute that? (20 (& and
all subsequent instructions until it executed an [[RTN) or a
instruction and stopped. When you pressed [a third time, the HP-67
would search downward to the third 77 ((2]) [@ instruction and execute
that program.

o C)
Executing

Q &

Searching

@B

Executing

@ kN

Searching
e)

Executing
Q RN

If you try to press a letter key (I through 3, 77 (3 through 7 ()
that is not contained as a label instruction in program memory, the
HP-67 will execute no instruction and will display .
For example, if your HP-67 contains only the program for area of a
circle that you keyed in earlier, you can see this by simply pressing
another letter key.

First, ensure that the W/PRGM-RUN switch wrram [l RuN is set
to RUN.

Press Display

B

To clear the error from the display, you can press E®%3, or any key on
the keyboard, or you can slide the W/PRGM-RUN switch
wpRGM MM ruN to W/PRGM. The calculator remains set at the
current step of program memory.

140 Simple Programming

Labels and Step 000

The labels (3 through @, [(@ through [(&, (0] through (8)) in
your programs act as addresses—they tell the calculator where to
begin or resume execution. When a label is encountered as part of a
program, execution merely ‘‘falls through’’ the label and continues
onward. For example, in the program segment shown below, when
you pressed [, execution would begin at (20 and continue down-
ward through program memory, on through the (C2] (3) instruction,
and continue until the was encountered and execution was

stopped.
When you press [3 ...

(EN N A | } ...execution begins here.

‘ No here...

(ERNE) so execution falls through
the (CJ(3) instruction...

Y
RTN ...and continues to the [RTN].

Execution falls through step 000, too. You can load instructions into
steps 001 through 224 of program memory, but you cannot load an
instruction into step 000. In fact, step 000 merely acts as a kind of
label in program memory, a beginning point for the loading of a
program. When step 000 is encountered by a running program, execu-
tion continues without a halt from step 224 to step 001, just as if step
000 were not there.

Flowcharts

At this point, we digress for a moment from our discussion of the
calculator itself to familiarize ourselves with a fundamental and ex-
tremely useful tool in programming—the flowchart.

141

A flowchart is an outline of the way a program solves a problem. With
224 possible instructions, it is quite easy to get ‘‘lost’’ while creating a
long program, especially if you try to simply load the complete
program from beginning to end with no breaks. A flowchart is a
shorthand that can help you design your program by breaking it down
into smaller groups of instructions. It is also very useful as
documentation—a road map that summarizes the operation of a pro-
gram.

A flowchart can be as simple or as detailed as you like. Here is a
flowchart that shows the operations you executed to calculate the area
of a circle according to the formula A = 7r2. Compare the flowchart
to the actual instructions for the program:

Flowchart Instructions

Key
in radius. (EW] - |

Start

'

Square radius. =

'

Summon pi. m

'

Multiply. a

:

Stop

142 Simple Programming

You can see the similarities. At times, a flowchart may duplicate the
set of instructions exactly, as shown above. At other times, it may be
more useful to have an entire group of instructions represented by a
single block in the flowchart. For example, here is another flowchart
for the program to calculate the area of a circle:

Calculate mr2.

Here an entire group of instructions was replaced by one block in the
flowchart. This is a common practice, and one which makes a flow-
chart extremely useful in visualizing a complete program.

You can see how a flowchart is drawn linearly, from the top of the
page to the bottom. This represents the general flow of the program,
from beginning to end. Although flowcharting symbols sometimes
vary, throughout this handbook and in the Standard Pac, we have held
to the convention of circles for the beginning and end of a program or
routine, and rectangles to represent groups of functions that take an
input, process it, and yield a single output. We have used a diamond to
represent a decision, where a single input can yield either of two
outputs.

Simple Programming 143

For example, if you had two numbers and wished to write a program
that would display only the larger, you might design your program by
first drawing a flowchart that looked like this:

Input #1.

Is
#2 larger than
#17?

Display #2. Display #1.

144 Simple Programming

After drawing the flowchart, you would go back and substitute groups
of instructions for each element of the flowchart. When the program
was loaded into the calculator and run, if #2 was larger than #1, the
answer to the question ‘‘Is #2 larger than #1?°’ would be YES, and
the program would take the left-hand path, display #2, and stop. If the
answer to the question was NO, the program would execute the
right-hand path, and #1 would be displayed. (You will see later the
many decision-making instructions available on your HP-67.)

As you work through this handbook, you will become more familiar
with flowcharts. Use the flowcharts that illustrate the examples and
problems to help you understand the many features of the calculator,
and draw your own flowcharts to help you create, edit, eliminate
errors in, and document your programs.

Problems

1. You have seen how to write, load, and run a program to calcu-
late the area of a circle from its radius. Now write and load a
program that will calculate the radius r of a circle given its area A
using the formula r = VA/m. Be sure to slide the W/PRGM-
RUN switch wrerem[[[illrun to W/PRGM and press
(CCZ55 first to clear program memory. Define the program with

(20 B and @@ [RTN). After you have loaded the program, run
it to calculate the radii of circles with areas of 28.27 square
inches, 113.10 square meters, and 254.47 square miles.)

(Answers: inches, [6.00 | meters, [9.00]miles.

2. Write and load a program that will convert temperature in
Celsius degrees to Fahrenheit, according to the formula
F = 1.8 C + 32. Define the program with ©" (20 [@ and I3
and run it to convert Celsius temperatures of —40°, 0°, and
+72°.

(Answers: [-40.00]° F, [32.00]°F, [161.60]°F.)

3. Immediately after running the program in Problem 2, create a
program that will convert temperature in degrees Fahrenheit
back to Celsius according to the formula C = (F-32)5/9, defin-
ing it using B8] () and B3 (RTN), and load it into program
memory immediately after the program you loaded in Problem
2. Run this new program to convert the temperatures in °F you
obtained back to °C.

Simple Programming 145

If you wrote and loaded the programs as called for in Problems 2 and
3, you should now be able to convert any temperature in Celsius
to Fahrenheit by pressing [, and any temperature in Fahrenheit to
Celsius by pressing = (). You can see how you can have many
different programs loaded into the HP-67 and select any one of them
for running at any time.

Section 7

Often you may want to alter or add to a program that is loaded in the
calculator. On your HP-67 keyboard, you will find several editing
functions that permit you to easily change any steps of a loaded
program without reloading the entire program.

As you may recall, except for the default function keys, all functions
and operations on the HP-67 keyboard can be recorded as instructions
in program memory except five others. These five functions are pro-
gram editing and manipulation functions, and they can aid you in
altering and correcting your programs. (The default functions above
the top-row keys are duplicated elsewhere on the calculator by keys
that can be recorded.)

Nonrecordable Operations

{CLZEC51) is one keyboard operation that cannot be recorded in pro-
gram memory. When you press [" CL22C1) with the W/PRGM-RUN
switch wrrem [[[HlruN set to W/PRGM, program memory is
cleared to instructions and the calculator is reset to the top of
memory (step 000) so that the first instruction will be stored in step
001 of program memory. " CL°°01) also sets the trigonometric mode
to DEG, the display mode to FIX 2, clears flags FO, F1, F2, and F3
(more about flags in section 13), and restores the default functions to
the keys (¥ through 3) on the top row of the keyboard. With the
W/PRGM-RUN switch set to RUN, [CC°°C1) merely cancels an [pre-
fix key that you have pressed.

(single step) is another nonrecordable operation. When you press
with the W/PRGM-RUN switch weprem [[[[IllrRuN set to
W/PRGM, the calculator moves to and displays the next step of
program memory. When you press down with the W/PRGM-
RUN switch wrrem M run set to RUN, the calculator displays the
next step of program memory—when you release the key, the
calculator executes the instruction loaded in that step. permits
you to single step through a program, executing the program one step
at a time or merely viewing each step without execution, as you
choose.

147

148 Program Editing

(8ST) (back step) is a nonrecordable operation that displays the
previous step of program memory. When you press () with the
W/PRGM-RUN switch werem [[[[HllRuN set to W/PRGM, the calcula-
tor moves to and displays the previous step of program memory.
When you press and release [and then press down with the
W/PRGM-RUN switch werM M ruN set to RUN, the calculator
moves to and displays the contents of the previous step of program
memory. When you then release (BST), the original contents of the
X-register are displayed. No instructions are executed.

(go to) (] (n) (n) (n] is another keyboard operation that cannot be
loaded as an instruction. (&2 3 or followed by any other label,
however, can be loaded as a program instruction. More about the use
of this instruction later.) Whether the Program Mode switch is set to
RUN or W/PRGM, when you press (<] followed by a three-digit
step number, the calculator transfers execution so that the next opera-
tion or instruction will begin at that step number. No instructions are
executed. If the calculator is in RUN mode, you can verify that the
calculator is set to the specified step by briefly sliding the Program
Mode switch weram [[[[Illlrun to W/PRGM. The O0mEa
operation is especially useful in W/PRGM mode because it permits
you to jump to any location in program memory for editing of or
additions or corrections to your programs.

The (delete) key is a nonrecordable operation that you can use to
delete instructions from program memory. When the Program Mode
switch wierm [[[[IllRuN is set to W/PRGM and you press (3 (DEL],
the instruction at the current step of program memory is erased, and
all subsequent instructions in program memory move upward one
step. The section of program memory shown below illustrates what
would happen when you press (3 (DEL] with the calculator set to step
004.

Program Editing 149

With the calculator set to step 004 when you press , program
memory is changed...

...from this... ...to this.
001 [[Em) A | 001 (=W A |
002 B 002 B
o003 0B@ 003 @)
004 B 004
005 0@ 005 R/S
006 (RS

Now let’s load a program from the keyboard and use these editing
tools to check and modify it.

Pythagorean Theorem Program

The following program computes the
hypotenuse of any right triangle, given
the other two sides. The formula used
is ¢ = Va? + b?.

Below are instructions for the program
(basically, the same keys you would
press to solve for ¢ manually),assuming

that values for sides a and b have been M y
input to the X- and Y-registers of — él\&
the stack.

To load the program:

First slide the Program Mode switch wiprm [[[[Illrun to W/PRGM.
Then press | L2525 to clear program memory of any previous pro-
grams and reset the calculator to step 000 of program memory.

150 Program Editing

Finally, load the program by pressing the keys shown below.

Press Display
Y € | 001 31 25 15
(s =)
0
a0
J 006 31 54
0 rN 007 35 22

With the program loaded into the HP-67, you can run the program.
For example, calculate the hypotenuse of a right triangle with side a of
22 meters and side b of 9 meters.

Before you can run the program, you must initialize it.

Initializing a Program

Initialization of a program means nothing more than setting up the
program (providing inputs, setting display mode, etc.) prior to the
actual running of it. Some programs contain initialization routines
that set up the data to run the program. In other programs, you may
have to initialize manually from the keyboard before running. In the
case of the program for calculating the hypotenuse of a triangle, to
initialize the program you must place the values for sides a and b in
stack registers X and Y. (Notice that the order does not matter in this
case.) Thus, to initialize this program:

First, slide the Program Mode switch wrrem[ll[[IRuN to RUN.

Press Display
22 22.00

9

The program for hypotenuse of a right triangle using the Pythagorean
Theorem is now initialized for sides of 22 and 9 meters.

Running the Program

To run the program you have only to press the user-definable key that
selects this program.

Press Display
a Length of side c in

meters.

To compute the hypotenuse of a right triangle with a side a of 73 miles
and a side b of 99 miles:

Press Display

73

99 Program initialized for
new set of data before
running.

E | Length of side c in miles.

Now let’s see how we can use the nonrecordable editing features of
the HP-67 to examine and alter this program.

Resetting to Step 000

As you know, when you press [[C_o:ci) with the Program Mode
switch set to W/PRGM, the calculator is reset to step 000 and all
instructions in program memory of the HP-67 are erased and replaced
with instructions. However, you can reset the HP-67 to step
000 of program memory while preserving existing programs in pro-
gram memory by pressing () 000 in W/PRGM or RUN
mode, or @3 RTN] in RUN mode.

To set the calculator to step 000 with the Pythagorean theorem pro-
gram loaded into program memory:

Press Display
(] 000 Length of side ¢ remains

in display from previous
running of program.

152 Program Editing

You could also have pressed in RUN mode to set the cal-
culator to step 000.

Slide the Program Mode switch weraM [[[[IMRUN to W/PRGM to
verify that the calculator is now set at step 000 of program memory.

Display

Single-Step Execution of a Program

With the Program Mode switch set to RUN, you can execute a
recorded program one step at a time by pressing the (single-step)
key.

To single-step through the Pythagorean Theorem program using a
triangle with side a of 73 miles and side b of 99 miles:

First slide the Program Mode switch wpraMm [ll[[[IruN to RUN.

Press Display

73

99 Program initialized for
this set of data before
running.

Now, press and hold it down to see the keycode for the next
instruction. When you release the key, that next instruction is
executed.

Press Display
SST 001 31 25 15| Keycode for 17 (0 3
seen when you hold
down.
(ED@ executed when

you release .

Program Editing 153

The first instruction of the program is executed when you press and
release E5. (Notice that you didn’t have to press [B—when you are
executing a program one step at a time, pressing the key begins
the program from the current step of program memory without the
need to press the user-definable @ key.)

Continue executing the program by pressing again. When you
hold down, you see the keycode for the next instruction. When
you release B4, that instruction is executed.

Press Display
SST 002 32 54| Keycode for (7.

9801.00 Executed.

When you press a third time in RUN mode, step 003 of program
memory is displayed. When you release the key, the instruction
in that step, @3 (%3], is executed, and the calculator halts.

Press Display
SST 003 35 52| Keycode for (X%3].

73.00 | Executed.

Continue executing the program by means of the key. When you
have executed the @ instruction in step 007, you have completed
executing the program and the answer is displayed, just as if the calcu-
lator had executed the program automatically, instead of via the
key.

Press Display
SST [004 32 54

[5329.00

15130.00

154 Program Editing

Press Display

SST 006 31 54
23.00

SST 007 35 22
123.00

You have seen how the key can be used in RUN mode to single-
step through a program. Using the B3 key in this manner can help
you create and correct programs. Now let’s see how you can use B33,
, and (3 ™ (1) (M) in W/PRGM mode to help you modify a
program.

Modifying a Program
Since you have completed execution of the above program, the HP-67
is set at step 008. You can verify that the calculator is set at this step

by sliding the Program Mode switch werem [[[Illlrun to W/PRGM
and observing the step number and keycode in the display.

Now let’s modify this Pythagorean Theorem program so that the stack
contents will automatically be reviewed at certain points in the pro-

gram. We will do this by inserting the instruction £3 at three
points in the program.

006 31 54
007 35 22

Press Display

E=a 001 31 25 15
(o] 002 32 54 \ We will insert a £l
(h] 003 35 52| <« \ instruction after
(9] 004 32 54 each of these
instructions.

()

To begin modification of the loaded program, again reset the
calculator to step 000 of program memory without erasing the
program:

Ensure that the Program Mode switch wirram [l run is set to RUN.

Press Display

0 RN 123.00 Calculator reset to step

000 of program memory.

Single-Step Viewing without Execution

You can use the key in W/PRGM mode to single-step to the
desired step of program memory without executing the program.
When you slide the Program Mode switch to W/PRGM, you should
see that the calculator is reset to step 000 of program memory. When
you press once, the calculator moves to step 001 and displays
the contents of that step of program memory. No instructions are
executed.

Slide the W/PRGM-RUN switch werem [[[[Jljrun to W/PRGM.

Press Display

Step 000 of program
memory displayed.
SST 001 31 25 15| Calculator moves to step
001 without executing
instructions.

You can see that the calculator is now set at step 001 of program
memory. If you press a recordable operation now, it will be loaded
in the next step, step 002, of program memory, and all subsequent
instructions will be ‘‘bumped’’ down one step in program memory.
Thus, to load the £} (STH instruction so that the calculator will review
the values in the stack at this point during execution:

Press Display
a 002 32 84

156 Program Editing

Now let’s see what happened in program memory when you loaded
that instruction. With the calculator set at step 001, when you pressed
(o] program memory was altered...

...from this... ...to this.
001 teJ @ 001 =3 (] instruction
002 B ~ 002) % inserted here.
003 @ 003 B)
004) ~ 004 X%y
005 X\ 005 @
006 I) § 006
gg; @J ~ zg; - % All subsequent
009 N 009 instructions are
270 A 970 ‘‘bumped’’ down one
011 (R/S 011 (R/S step of program
memory.
221 (R/s 221 (R/S
222 N 2
223 XN o3
224 (RIS S 224 (RIS
R/S One instruction lost

here.

You can see that when you insert an instruction in a program, all
instructions after the one inserted are moved down one step of program
memory, and the instruction formerly loaded in step 224 is lost and
cannot be recovered. In this case, the last instruction was a
instruction and was not used in the program. Note, however, that if
you inserted an instruction into program memory when step 224
contained an instruction used in a program, the instruction would
be lost from step 224. You should always view the contents of
the last few steps of program memory before adding instructions to a
program to ensure that no vital instructions will be lost from there.

Program Editing 157

Going to a Step Number

It is easy to see that if you wanted to single-step from step 000 to
some remote step number in program memory, it would take a great
deal of time and a number of presses of the key. So the HP-67
gives you another nonrecordable operation, () (0 () (), that
permits you to go to any step number of program memory.

Whether the Program Mode switch is set to W/PRGM or to RUN,
when you press (] (0] (0] (n], the calculator immediately jumps
to the program memory step number specified by the three-digit
number (0] (n) (n). No instructions are executed. In RUN mode, you
can momentarily slide the Program Mode switch to W/PRGM to view
this program information, while if the calculator is already in
W/PRGM mode, the step number and keycode for the instruction con-
tained in that step are displayed. Program searching or execution then
will begin with that step of program memory. Loading will begin with
the next step of program memory.

For example, to add a £} instruction to review the stack contents
after the hypotenuse has been calculated by the instruction in step 007,
you can first press (go to) followed by a decimal point and the
appropriate three-digit step number of program memory. Then press
(9] to place that instruction in the following step of program
memory. Remember that when you add an instruction in this manner,
each subsequent instruction is moved down one step in program
memory, and the last instruction is lost from step 224. To add a
3 (EH instruction after the [(D instruction, keycode 31 54, that is
now loaded into step 007:

Press Display
() 007 007 31 54
(o] 008 32 84

As you load the) instruction into step 008, the instruction
that was formerly in step 008 is moved to step 009, and the instructions
in subsequent steps are similarly moved down one step. The
instruction in step 224 is lost from program memory.

When you added the £J instruction after step 007, program
memory was altered...

...from this... ...to this.
o1 [@3 01 D3
002 1 EK] 002) EK)
003 [} 003 [
004 004 O3
005 [() 005 [()
006 E: 006
007 = 007 =
008 [RTN) 008 [EK) <« [E7K] instruction
009 \ 009 03 inserted here.
010 (R/s \ 010
\ 011 (R/s
All subsequent
instructions are moved
221 221 down one step of
RIS R/S
222 \ 22 program memory.
223 (RIS > 223 (RS
224 (RIS R 224 (RIS
R/S One instruction lost

here.

Stepping Backwards through a Program

The (BST] (back step) key allows you to back step through a loaded
program for editing whether the calculator is in RUN or W/PRGM
mode. When you press @3 (BST), the calculator backs up one step in
program memory. If the calculator is in RUN mode, the previous
step is displayed as long as you hold down the (BST] key. When you
release it, the original contents of the X-register are again displayed.
In W/PRGM mode, of course, you can see the step number and
keycode of the instruction in the display at all times. No instructions
are executed, whether you are in RUN or W/PRGM mode.

You now have one more £J (E7K] instruction to add to the Pythagorean
Theorem program. The [} instruction should be added after the
(h] instruction, keycode 35 52, that is now loaded in step 004
of program memory. If you have just completed loading a £} [ETK]
instruction in step 008 as described above, the calculator is set at
step 008 of program memory. You can use(BST to back the calculator
up to step 004, then insert the £} (ETK] instruction in step 005. To
begin:

Ensure that the Program Mode switch wrram [[[[IlllRUN is set to
W/PRGM.

Press Display
008 32 84| Calculator initially set to
step 008.
(h] 007 37 54] Pressing(BsT once moves

the calculator back one
step in program memory.

When you press [(BST), the calculator backs up one step in program
memory. No instructions are executed when you use the key.
Continue using the (BST key to move backward through program
memory until the calculator displays step 004.

Press Display

Q) (st 006 61
005 32 54
0 (st 004 35 52

Since you wish to insert the £} (ETK] instruction after the (3
instruction now loaded in step 004, you move the calculator to step
004 first. As always, when you key in an instruction, it is loaded
into the next step after the step being displayed. Thus, if you press
(9] now, that instruction will be loaded into step 005 of program
memory, and all subsequent instructions will be moved down, or
‘“bumped,’’ one step.

160 Program Editing

Press Display
(g] 005 32 84

You have now finished modifying the Pythagorean Theorem program
so that you can review the stack at several points during the running
of it. The altered program is shown below:

001 (=l e |
002 [E)(EH
003 BX®
004 0)
005 B (s
o006 B
007

008 C]
009 B
010 @ RN m
011 R/S

If you wish, you can use the key in W/PRGM mode to verify
that the program in your HP-67 matches the one shown above.

Running the Modified Program

To run the Pythagorean Theorem program, you have only to key in
the values for sides a and b and press [@ . The HP-67 will now review
the stack contents, then square side b, exchange the contents of the
X- and Y-registers, and review the stack contents again. Finally, the
value for the hypotenuse will be calculated, the stack contents will
be reviewed a third time, and the calculated value for the hypotenuse
will appear in the X-register when the program stops running.

For example, to compute the hypotenuse of a right triangle with
sides a and b of 22 meters and 9 meters:

Slide the W/PRGM switch wieram [ll[[Jrun to RUN.

Press Display

22 22.00

Program Editing 161

ﬂ

Program initialized.

E] 23.77 After reviewing the stack
contents three times dur-
ing the running program,
the answer in meters is
displayed.

Now run the program for a right triangle with sides a and b of 73
miles and 99 miles.
(Answer: 123 miles.)

Deleting an Instruction

Often in the modification of a program you may wish to delete an
instruction from program memory. To delete the instruction to which
the calculator is set, merely press the nonrecordable operation (h]
[OEL] (delete) with the HP-67 Program Mode switch weram [[[Jlll RuN
set to W/PRGM. (When the Program Mode switch is set to RUN,
pressing [DEL] does nothing except cancel a pressed prefix key @3 .)
When you delete an instruction from program memory using the
key, all subsequent instructions in program memory are moved
up one step, and a instruction is loaded into step 224. The
calculator moves to the step before the deleted step and displays it.

For example, if you wanted to modify the Pythagorean Theorem
program that is now loaded into the calculator so that the stack was
only reviewed once, at the end of the program, you would have to
delete the) instructions, keycodes 32 84, that are presently
loaded in steps 002 and 005 of program memory. To delete these
instructions, you must first set the calculator at these steps using
&5, 0 (857 or () (0 (0] (0], then press @ (DEL]. To delete
the B instruction now loaded in step 002:

First, slide the Program Mode switch wpram [[[[Illrun to W/PRGM.

Press Display
.002 002 32 84| Step 002 is displayed.
0 (oL 001 31 25 15| The instruction in step

002 is deleted and the
calculator moves to step
001.

162

Program Editir

(1

You can use the key to verify that the £} instruction,
keycodes 32 84, has been deleted, and subsequent instructions have
been moved up one step.

Press

SST

Display
002 32 54

The instruction formerly
in step 003 was moved up
to step 002, and all
subsequent instructions
were moved up one step,
when you pressed [
DEL].

When you set the calculator to step 002 of program memory and
pressed @ [PEL), program memory was altered...

...from this...

001
002
003
004
005
006
007
008
009
010
011
012

221
222
223
224

0600

BEfalEla

=| (2 x
[m]

[+] <]
B
AU AN

=808
370
|
!l

»n

R
R
R
R/S

=~

2
IS I
0| (0] (©» [

...to this.
001 (=Y e |
002 3
003 @
004 1
005 [
006
007 &)
008 [}
009 ¥ RTN
010
011 (R/s
221
222
223
224

A

One instruction
deleted here.

These instructions all
move upward one step.

One instruction
added here.

Program Editing 163

To delete the £} instruction now loaded in step 004 you can use
the53 key to single-step down to that step number and then delete
the instruction with the (i (DEYJ operation.

Press Display

SST 003 35 52

SST 004 32 84

(oEQ 003 35 52| The®) instruction,
keycodes 32 84, is
deleted from step 004 and

the calculator displays
step 003. Subsequent
instructions move up one
step of program memory.

If you have modified the program as described above, the HP-67
should now review the contents of the stack only once, just before the
program stops. The calculated value of the hypotenuse is then
displayed.

Slide the Program Mode switch wreram[ll[[[IrRuN to RUN, and
run the program for right triangles with:

Sides @ and b of 17 and 34 meters. (After reviewing the stack,
calculator displays answer for side ¢, 38.01 meters.)

Sides a and b of 5500 rods and 7395 rods. (After reviewing the stack,
calculator displays answer for side ¢, 9216.07 rods.)

To replace any instruction with another, simply set the calculator to
the desired step of program memory, press [[DEJ to delete the first
instruction, then press the keystrokes for the new instruction.

The editing features of the HP-67 have been designed to provide you
with quick and easy access to any part of your program, whether
for editing, debugging, or documentation. If a program stops running
because of an error or because of an overflow, you can simply slide
the W/PRGM-RUN switch to W/PRGM to see the step number and
keycode of the operation that caused the error or overflow. If you
suspect a portion of your program is faulty, you can use the
(=] () (n) () operation from the keyboard to go to the suspect section,
then use the operation in RUN mode to monitor every change
in calculator status as you execute the program one step at a time.

164 Program Editing

Problems

1. You may have noticed that there is a single keyboard operation,
£} (=7, that calculates the hypotenuse, side c, of a right triangle
with sides a and b input to the X- and Y-registers. Replace
the (7], (%), (), €3, and (3] instructions in the Pythagorean
Theorem program with the single £ &7 instruction as follows:

a. Use the () (@) (@) () and keys to verify that the

Pythagorean Theorem program in your HP-67 contains the
instructions shown below.

oor = (D@
002)
003 X% Replace all of these
004 [) instructions with a
005 B instruction.
006
007 B
008 [RTN)
b. Use the (<] (0] (n] (0] keyboard operation to go to step
006, the last instruction to be deleted in the program.

c. Use the @ [OEL) keyboard operation in W/PRGM mode to
delete the instructions in steps 006, 005, 004, 003, and 002.

g

@)

Note: When modifying a program, you should always de-
lete instructions before you add others, to ensure that no
vital instructions are “bumped” from the bottom of program
memory and lost.

d. Load the £3 instruction into step 002.
e. Verify that the modified program looks like the one below.

oo1 ())
002 [(=9
003)
004 (RTN]
f. Switch to RUN mode and run the program for a right

triangle with sides a and b of 73 feet and 112 feet.
(Answer: 133.69 feet)

liting 165

The following program is used by the manager of a savings and
loan company to compute the future amounts of savings
accounts according to the formula FV = PV (1 +i)", where
FV is future value or amount, PV is present value, i is the
periodic interest rate expressed as a decimal, and n is the number
of periods. With PV entered into the Y-register, n keyed into
the X-register, and an annual standard interest rate of 7.5%,
the program is:

001 (Em] A
002

003
004 (9

005 (0

006

007 (3

008

009
oo B
011 B

012 @ R

a. Load the program into the calculator.

b. Run the program to find the future amount of $1,000
invested for S years.

(Answer: $1,435.63)
Of $2,300 invested for 4 years.

(Answer: $3,071.58)

c. Alter the program to account for a change of the annual
interest rate from 7.5% to 8%.

d. Run the program for the new interest rate to find the future
value of $500 invested for 4 years; of $2,000 invested for 10
years.

(Answer: $680.24; $4,317.85)

166

Program Editing

The following program calculates the time it takes for an object
to fall to the earth when dropped from a given height. (Friction
from the air is not taken into account.) When the program is
initialized by keying the height 4 in meters into the displayed
X-register and [J is pressed, the time ¢ in seconds the object
takes to fall to earth is computed according to the formula:

2h
t =
9.8 meters/second?

a. Clear all previously recorded programs from the calculator
and load the program below.

001 [l A
002
003 (2)

004 B3

005 (3

006 (9

007

oos B

009 ([
o010 03 rR1N)

b. Run the program to compute the time taken by a stone to
fall from the top of the Eiffel Tower, 300.51 meters high; from
a blimp stationed 1000 meters in the air.

(Answers: 7.83 seconds; 14.29 seconds)

c. Alter the program to compute the time of descent when the
height in feet is known, according to the formula:

B 2h
32.1740 feet/second?

167

d. Run the altered program to compute the time taken by a
stone to fall from the top of the Grand Coulee Dam, 550 feet
high; from the 1350-foot height of the World Trade Center
buildings in New York City.

(Answers: 5.85 seconds; 9.16 seconds)

Section 8

-
o
=
o
g
e
as
1
o
E
szt

i |_R/S
Using (s
As you know, the (run/stop) function can be used either as an
instruction in a program or pressed from the keyboard.

When pressed from the keyboard:

1. If a program is running, stops the program.

2. If a program is stopped or not running, and the calculator is in
RUN mode, starts the program running beginning with the
current location in program memory.

When executed as an instruction during a running program, stops
program execution after its step of program memory. If is then
pressed from the keyboard, execution begins with the current step of
program memory. (When is pressed, the step number and
keycode of that current step are displayed—when released, execution
begins with that step.)

You can use these features of the instruction to stop a running
program at points where you want to key in data. After the data has
been keyed in, restart the program using the key from the
keyboard.

Example: The following program lets you key in a percentage
discount and calculates the cumulative cost of various quantities of
differently priced items from which the discount has been subtracted.
instructions are inserted in the program to allow you to key in
data at various points.

Slide the W/PRGM-RUN switch weram [[[[IllRuN to W/PRGM.

Press Display

(CRzey)
169

170 Interrupting Your Program

Press Display
o NI EY 007 32 25 11]) Initialization routine,
(CCreG) 002 31 43|} storing discount
0 003 33 00|) percentage in R,.
@Eo 00431 25 11
005 41
R/S 006 84| Stop to key in price.
[x] 007 71
0 008 34 00
@ 009 31 82
=) 010 51
1 071 33 61 07] Add to running total in
R;.
1 012 34 01] Recall running total for
display.
013 35 22

In order to calculate the cumulative total for each percentage of
discount, first initialize the program by keying in the percentage value
and pressing (2). Then key in the first quantity and press 3.
When the program stops, key in the price for the first quantity, then
press to resume execution. The calculator will display the
running total. For a second quantity and price, key in the second
quantity and press [[§J again; when the program stops at the
instruction, key in the price of the second item and press from
the keyboard again. The calculator will display the running total once
more.

For each new percentage of discount, you must re-initialize the
program by keying in the percentage value and pressing [[£]).

Now run the program to calculate the cumulative total of the following
purchases at a discount of 15%:

Quantity Price of Each
5 $ 7.35
7 $12.99
14 $14.95

Then run the program to calculate the cumulative total of the follow-
ing purchases at a discount of 25%:

Quantity Price of Each
7 $4.99
12 $1.88
37 $8.50

To run the program:
Slide the W/PRGM-RUN switch wrrM [ll[[MIrun to RUN.

Press Display
15 Key in percentage of
discount.
@] Initialize program.
50 The first quantity.
7.35 Running total.
0 The second quantity.
12.99 108.53 Running total.
140 (14.00] The third quantity.
14.95 Cumulative cost for items
at 15% discount.
25 Percentage of discount.
@] Re-initialize program.
710 The first quantity.
4.99 26.20 Running total.
120 12.00
1.88 Running total.
70 G700
8.50 Cumulative cost for items

at 25% discount.

172

If you have a number of halts for data entries in a program, it may
be helpful to ‘‘identify’’ each step by recording a familiar number
into the program immediately before each instruction. When the
calculator then stops execution because of the instruction, you
can look at the displayed X-register to see the ‘‘identification
number’’ for the required data input at that point. For example, if
your program contained eight stops for data inputs, it might be helpful
to have the numbers 1 through 8 appear so that you would know which
input was required each time. (Don’t forget that the ‘‘identification
number’’ will be pushed up into the Y-register of the stack when
you key in a new number.)

Pausing in a Program

Pausing to View Output

As you know, a instruction in a program halts execution of the
program until is again pressed from the keyboard. There are
often times when you may want a running program to pause long
enough for you to write down or view an answer, and then resume
execution again automatically. On your HP-67, there are two
functions that are used to cause a running program to momentarily

pause, () and .

(Z), when encountered as an instruction by a running program,
halts the program and displays the contents of the X-register for about
5 seconds, plenty of time to write down the answer, in most cases. So
that you will know that the program has not stopped completely, the
decimal point blinks eight times during the pause. When the pause is
completed, the program resumes execution automatically with the
next instruction in program memory. If you press any key during an
("] pause, program execution stops altogether.

(pause), when encountered as an instruction by a running
program, halts the program and displays the contents of the X-register
for about 1 second. This type of pause is usually employed where you
want to monitor the operation of a program, but where the recording
of answers is not important. When the pause is completed, the
program resumes execution with the next instruction in program
memory. Unlike an ("] pause, you can key in numbers or execute
functions from the keyboard during a

The following example illustrates the operation of both types of
pauses to view output.

173

Example: Arthur Dimsdale is solely responsible for the night shift
at Tintoretto Tins, a canning company. For each of several sizes of
cylindrically-shaped cans, Dimsdale knows only the radius r and the
height h of each size of can, and the number of cans of each size.
He needs to first calculate the area of the base and display it long
enough to set a dial on his production line (a 1-second display will
do). Then he needs to know the volume of the can long enough to
write it down (this should take him about 5 seconds), and finally
he needs to know the total volume of all cans of that size.

Solution: The program below first calculates the area A4 of the base by
the formula A = 7rr?, and uses a(PAUSE] to display the area for about 1
second. Then the program calculates the volume V of a single can
according to the formulaV =A X h, and uses an(_J pause to display
the volume long enough for Dimsdale to write it down. Finally, the
program multiplies the number of cans (n)times the volume of each
can to compute the total volume of all cans of that size. The program
assumes that the number of cans (n) has been entered to the Z-register
of the stack, that the height 4 of the can has been entered to the
Y-register, and that the radius r has been placed in the displayed
X-register.

To load the program into the calculator:
Slide the Program Mode switch wipram [[[[JJll run to W/PRGM.

Press Display
S
En] A
0=
(] Calculates A = 7r2.
8 004 71
(h] Displays A for about 1
second.
8 Calculates V = A X h.
() 007 31 84| DisplaysV of one can for
about 5 seconds.
[x | Calculates total volume.
0 kTN 009 35 22| Stops and displays total

volume.

174 Interrupting Your Program

To find Dimsdale’s outputs if he had 20,000 cans with heights of 25
centimeters and radii of 10 centimeters:

Slide the Program Mode switch wrram [ll[[MIRuN to RUN.

Press

20000
25
10

Display

20000.00

25.00
1

314.16
7853.98

Jull

157079632.7

Number n of cans.
Height A of single can.
Radius r of single can.

Area of base of can.

Volume of can in cubic
centimeters.

Total volume of cans in
cubic centimeters.

To find Dimsdale’s outputs if he had 7500 cans that were 8 centi-
meters high with base radii of 4.5 centimeters:

Press
7500 E5ED

SENED
4.5

Display

7500.00
8.00

63.62

508.94

3817035.07

Base area of can in
square centimeters.
Single can volume in
cubic centimeters.
Total volume of cans in
cubic centimeters.

Pausing for Input

When the calculator executes a instruction, program control
actually returns to the keyboard for the period of time (about one
second) of the pause. You can use a to key data into or
perform functions from the keyboard, instead of using the
instruction to stop the running program completely. (Control does
not return to the keyboard during an ("] pause, however.)

When you press any key during the one-second ‘‘window’’ while the
calculator is executing a instruction, that key actually
operates, and you have an additional one second of time to view the
result or to press another key. If you press yet another key during
the subsequent one second, the calculator will perform that operation
and pause for another second.

If you press a function key during a pause, the function key operates
upon the number contained in the X-register at the time. The result
of the function is then seen in the display for about one second.
Any function key that is programmable can also be operated from the

keyboard during a (PAUSE].

If you press a digit key, or a series of digit keys, during a pause,
the number appears in the display for the length of a pause (about
one second) after you key in the number. (If a number has been input
from the program immediately before the pause, that number is first
terminated by the instruction.) The number that you key in is
terminated at the end of the pause. Any subsequent digits in a program
will then be part of a new number.

When a instruction has completed execution, the program
continues to be executed sequentially. If you have performed a
function, or keyed in a number, program execution begins with the
next instruction using the number that is in the displayed X-register
at the end of the pause. (You can also read a magnetic card during
a[PAuSE . More about this in section 14, Card Reader Operations.)

Number termination occurs at the end of each (PAUSE], so you should
not attempt to key in a number during more than one subsequent
pause. Since you have about one second after your last keystroke
to continue keying in digits or functions, you don’t need more than
one instruction to key in even a very long number.

17

N

Interrupting Your Program

Example: The following program calculates the average of any three
numbers, which are keyed in during three pauses in program
execution. To key in the program:

Slide the Program Mode switch werem [[[[Illlrun to W/PRGM.

Press Display
(=Y 000
=N A 001 31 25 11
=)
=
eLX 004 44
[005 35 72| Pause to input first
number.
oo
(h] Pause to input second
number.
009 21
CL X 010 44
[o11 35 72| Pause to input last
number.
&) 013 31 21| Calculate average.
(RTN) 014 35 22

Now run the program to find the average of 1, 2, and 3; of 157,
839, and 735. Merely start the program running by pressing ¥,
then key in the desired three numbers during the successive pauses.

Slide the Program Mode switch werem [lll[[Irun to RUN.

Display

wN»—-a:F
g

Average of 1, 2, and 3.

(A

157
839
735

Interrupting Your Program 177

000 |

[0.00
|577.00 Average of 157, 839, and
735.

You can see that it is easy to key in a number of any length during

the execution of a instruction.

Section 9

Branching

Unconditional Branching and Looping

You have seen how the nonloadable operation &) (<) (n) (1) () can be
used from the keyboard to transfer execution to any step number of
program memory. You can also use the go to instruction as part of
a program, but in order for to be recorded as an instruction, it
must be followed by a label designator (I3 through @3, @
through (3, or (@) through (8)). (It can also be followed by
(@ —more about using (@ later.)

When the calculator is executing a program and encounters a (B
instruction, for example, it immediately halts execution and begins
searching sequentially downward through program memory for that
label. When the first (20 B instruction is then encountered,
execution begins again.

By using a instruction followed by a label designator in a pro-
gram, you can transfer execution to any part of the program that you
choose.

% =0
4 \
Execution branches to next f (B]
e
' = 8
§

179

A instruction used this way is known as anunconditional branch.
It always branches execution from the instruction to the specified
label. (Later, you will see how a conditional instruction can be used in
conjunction with a instruction to create a conditional branch—a
branch that depends on the outcome of a test.)

A common use of a branch is to create a ‘‘loop’’ in a program. For
example, the following program calculates and displays the square
roots of consecutive whole numbers beginning with the number 1. The
HP-67 continues to compute the square root of the next consecutive
whole number until you press to stop program execution (or
until the calculator overflows).

To key in the program:

First, slide the Program Mode switch weram [[[[IllRuN to W/PRGM.
Press/" [_-_1] to clear program memory and reset the calculator to
step 000.

Press Display
@0
@ 002 00
1 003 33 01
| EI 004 31 25 07
® 005 01
1 006 33 61 01| Adds 1 to current number
in R,.
1 007 34 07| Recalls current number
from R;.
(h] 008 35 7 Displays current number.
)
Displays square root of
current number.
ae 7 011 22 07| Transfers execution to
(2] 7 again.

RTN 012 35 22

To run the program, slide the Program Mode switch wprm [l run
to RUN and press ¥ . The program will begin displaying a table of
integers and their square roots and will continue until you press
from the keyboard or until the calculator overflows.

How it works: When you press ¥, the calculator searches through
program memory until it encounters the '~ (] E¥ instruction that
begins the program. It executes that instruction and each subsequent
instruction in order until it reaches step 011, the 7 instruction.

The 7 instruction causes the calculator to search once again,
this time for a (] 7 instruction in the program. When it encounters
the (] 7 instruction loaded in step 004, execution begins again from
that (ZJ) 7. (Notice that the address after a instruction in a pro-
gram is a label, not a step number.)

001 (EE] A
002 (@

003 1

004 7
005 (1

006 1
007 1
008
009]
oo 0
011 7
012 RN

Since execution is transferred to the ((_]) 7 instruction in step 004
each time the calculator executes the 7 instruction in step 011, the
calculator will remain in this ‘‘loop,’’ continually adding one to the
number in storage register R, and displaying the new number and its
square root.

182 Branching

Looping techniques like the one illustrated here are common and
extraordinarily useful in programming. By using loops, you take
advantage of one of the most powerful features of the HP-67—the
ability to update data and perform calculations automatically, quickly,
and, if you so desire, endlessly.

You can use unconditional branches to create a loop, as shown above,
or in any part of a program where you wish to transfer execution to
another label. When the calculator executes a instruction, it
searches sequentially downward through program memory and begins
execution again at the first specified label it encounters.

Problems

1. The following program calculates and pauses to display the
square of the number 1 each time it is run. Key the program in
with the W/PRGM-RUN switch werem[[[[Jillrun set to
W/PRGM, then switch to RUN and run the program a few times
to see how it works. Finally, modify the program by inserting an

((E0 [instruction after the 1 instruction in step 003,
and a [instruction after the second (3 instruction.
This should create a loop that will continually display a new
number and display its square, then increment the number by 1,
display the new number and compute and display its square, etc.
To load the original program, before modification, slide the
W/PRGM-RUN switch weraM [[[[llRuN to W/PRGM. Then:

Press Display

Ecerov]

Ea
0 002 00
1
1 004 01
1
1
(]
a
(h |

(h] 010 35 22

Run the modified program to generate a table of squares.

Branching 183

Use the flowchart on the follow-
ing page to create a program that
computes and pauses to display
the future value (FV) of a com-
pound interest savings account in
increments of one year according
to the formula:

FV = PV(l + i)

where FV = future value of the savings account.
PV = present value (or principal) of the account.

i =interest rate (expressed as a decimal
fraction; e.g., 6% is expressed as 0.06).
n =number of compounding periods (usually,
years).

Assume that program execution will begin with i entered into the
Y-register of the stack and with PV keyed into the displayed
X-register.

After you have written and loaded the program, run it for an

initial interest rate i of 6% (keyed in as .06) and an initial deposit
(or present value, PV) of $1000.

(Answer: 1% year, $1060; 2" year, $1123.60;
3rd year, $1191.02; etc.)

The program will continue running until you press (or any
key), or until the HP-67 overflows. You can see how your
savings would grow from year to year. Try the program for
different interest rates i and values of PV.

Write a program using that will use the factorial function
((N1)) to calculate and pause to display the factorials of succes-
sive integers beginning with the number 1. (Hint: Place 1 in a
storage register, recall it, then use storage register arithmetic to
increment the number in the storage register, etc.)

184

Branching

Define
beginning of
program with

LBL A.

Store PV
in primary storage
register R,.

Bring i into
display by rolling
down stack.

Store quantity 1
in primary storage
register R,.

Store (i + 1)
in primary storage
register R,.

Define beginning
of routine with
LBL 4.

Recall
(i + 1) from R,.

Recall n from R,.

Pause to
display n.

Compute (1 + i)".

PV from R,.

Multiply PV
by (1 + i

Pause to
-display result (FV).

Add1tonin
register R,.

Go to LBL 4.

Branching 185

Conditionals and Conditional Branches

Often there are times when you want a program to make a decision.
For example, suppose an accountant wishes to write a program that
will calculate and display the amount of tax to be paid by a number
of persons. For those with incomes of $10,000 per year or under,
the amount of tax is 17.5%. For those with incomes of over $10,000,
the tax is 20%. A flowchart for the program might look like this:

Key in amount
of income.

income over
$10,000?

Compute Compute
20% of income. 17.5% of income.

Display tax.

180

The conditional operations on your HP-67 keyboard are useful as
program instructions to allow your calculator to make decisions like
the one shown above. The eight conditionals that are available on your
HP-67 are:

B =)
8 £

9
=9
9
=9

tests to see if the value in the X-register is equal to the value
in the Y-register.

tests to see if the value in the X-register is unequal to the
value in the Y-register.

tests to see if the value in the X-register is less than or equal
to the value in the Y-register.

tests to see if the value in the X-register is greater than the
value in the Y-register.

tests to see if the value in the X-register is equal to zero.
tests to see if the value in the X-register is unequal to zero.
tests to see if the value in the X-register is less than zero.

tests to see if the value in the X-register is greater than zero.

Each conditional essentially asks a question when it is encountered as
an instruction in a program. If the answer is YES, program execution
continues sequentially downward with the next instruction in program
memory. If the answer is NO, the calculator branches around the
next instruction. For example:

— |Conditional Test ——
Yes | |

No

|

~
~

You can see that after it has made the conditional test, the calculator
will do the next instruction if the test is true. This is the ‘DO if
TRUE’’ rule.

The step immediately following the conditional test can contain any
instruction. The most commonly used instruction, of course, will be
a instruction. This will branch program execution to another
section of program memory if the conditional test is true.

1 ~— Conditional Test |~

colal | No

Instruction -

Yes

| Instruction
: Instruction
, Instruction
L :] @
Instruction
Instruction
Instruction

Instruction

Now let’s look at that accountant’s problem again. For persons with
incomes of more than $10,000 he wants to compute a tax of 20%.
For persons with incomes of $10,000 or less, the tax is 17.5%. The
following program will test the amount in the X-register and compute
and display the correct percentage of tax.

188

To key in the program:
Slide the W/PRGM-RUN switch werem[[[[Illruny to W/PRGM.

Press

EeereM)
(W] 1 |

[EEX |
4

h JER¥)

G0 o

Amount of $10,000
placed in Y-register.

If amount of income is

}greater than $10,000, go
to portion of program

defined by label B.

Tax percentage for this

portion of program is

17.5.

Display

000

001 31 25 11

002 43

003 04

004 35 52
005 32 81
006 22 12
007 01
008 07
009 83
010 05
011 22 13

013

|

02
0

014 0

portion of program is 20.

012 3125 12 }Tax percentage for this

015 31 25 13

016

017 35 22]

31 82

To run the program to compute taxes on incomes of $15,000 and
$7,500:

Slide the W/PRGM-RUN switch wrrem [llMIrun to RUN.

Press Display
15000 03 Dollars of tax.

7500 3 Dollars of tax.

Another place where you often want a program to make a decision is
within a loop. The loops that you have seen have to this point been
infinite loops—that is, once the calculator begins executing a loop,
it remains locked in that loop, executing the same set of instructions
over and over again, forever (or, more practically, until the calculator
overflows or you halt the running program by pressing or any
other key).

You can use the decision-making power of the conditional instructions
to shift program execution out of a loop. A conditional instruction
can shift execution out of a loop after a specified number of iterations
or when a certain value has been reached within the loop.

Example: As you know, your HP-67 contains a value fore, the base
of natural logarithms. (You can display the calculator’s value for e by
pressing 1 £ (£7.) The following program uses the series e = 1/0!
+ 1/1! + 1/2! + ... + 1/n!to approximate the value fore. After each
iteration through the loop, the latest approximation is displayed and
compared to the calculator’s value for e. When the two values are
equal, the execution is transferred out of the loop to stop the program.

190 Branching

Recall total.

Recalln.
Compute 1/n!.

Add 1/n! to total.

Add 1ton.

Store total.

Pause to
display total.

total = e?

Branching 191

To load the program into the calculator:
Slide the W/PRGM-RUN switch weram [[[[Illrun to W/PRGM.
Press Display

[CtPRcM

(= A 001 31 25 11
I
0
o (v
%
006 61
G 9
1 008 33 01
(|
1
o)
0 =) 012 32 51
7 013 22 07
1 014 01
0 015 33 61 00
a 016 22 11

(=0 7 017 31 25 07
018 35 22

To initialize the program ensure that the primary storage registers are
cleared to zero. Then press ¥ to run the program:

First, slide the W/PRGM-RUN switch wrrem [l[[[Irun to RUN.
Press Display

(CCREG) Ensures that primary

storage registers are
cleared to zero initially.
a 2.718281828

You can see that execution continues within the loop until approxima-
tion for e equals the calculator’s value for e. When the instruction
in step 012 is finally true, execution is transferred out of the loop
by the subsequent(&J 7 instruction and halted by the(RTN instruction.

192

Branching

Problems

1.

Write a program that will calculate the arc sine (that is, sin™!) of
a value that has been keyed into the displayed X-register. Test
the resulting angle with a conditional, and if it is negative or
zero, add 360 degrees to it to make the angle positive. Use the
flowchart below to help you write the program.

Calculate arc
sine of x.

Is
arc sine
greater than
zero?

Add 360 degrees.

The program below contains a loop that displays consecutive
integers and their common logarithms. You can specify the
lowest integer by storing a number in primary storage register
Ry, but the program will continue until you press or any
other key from the keyboard, or until the calculator’s capacity
for display is exceeded.

o001 EIn
002 [E39

003 0

004 =
005
006 =
007
008 1

009 0
010 0

o110 RN

Using the additional instructions 8,7, [and (50
), you should be able to modify this program to halt execution
when a certain number is reached. As you add these instruc-
tions, assume that the value for the upper limit has been manu-
ally stored in primary storage register Rg.

When the program is running and the value in register R,
becomes greater than the limit you store in register Rg, program
execution should be transferred out of the loop to the RTN]
instruction to halt the running program.

Modify the program, key it into the calculator, and initialize the
calculator by storing a lower limit of 1 in register R, and an
upper limit of 5 in register Rg. Then run the program. Your
displays should look like the ones on the next page. Try other
upper and lower limits. (The lower limit must always be greater
than zero, and the upper limit should be greater than the lower
limit.)

194

Branching

Display

[0.000000000]
[2.000000000]
(0602059997 |

5.000000000 |

Use the flowchart on the opposite page to help you write a
program that will allow a salesman to compute his commissions
at the rates of 10% for sales of up to $1000, 12.5% for sales of
$1000 to $5000, and 15% for sales of over $5000. The program
should display the amount of commission when it stops.

Load the program and run it for sales amounts of $500, $1000,
$1500, $5000, and $6000.

(Answers: $50.00, $125.00, $187.50, $625.00, $900.00)

Branching 195

Key
in sales
amount and
start.

Sales
< $1000?

Calculate Calculate Calculate
10% of sales. 12.5% of sales. 15% of sales.

Display amount
of commission.

Section 10

Subroutines

Often, a program contains a certain series of instructions that are
executed several times throughout the program. When the same set of
instructions occurs more than once in a program, it can be executed as
a subroutine. A subroutine is selected by the C=5) (go to subroutine)
operation, followed by a label address (f§ through @, (0] through
(®); or by [E5E1] followed by (&) through (5]. You can also select a
subroutine with [C=5)) —more about [} later.

A or instruction transfers execution to the routine specified
by the label address, just like a instruction. However, after a
=9 or instruction has been executed, when the running pro-
gram then executes a (return), execution is transferred back to
the next instruction after the C=-). Execution then continues sequen-
tially downward through program memory. The illustration below
should make the distinction between and (C55) more clear.

Branch
o , Do
| |
a
'
RT
Ll (BT Execution stops here.
Subroutine
@o , @o
v 1
. ‘
* [
v ;
Execution stops here. RN (RTN] Y

197

In the top illustration of a branch, if you pressed &¥ from the keyboard,
the program would execute instructions sequentially downward
through program memory. If it encountered a [instruction, it
would then search for the next (C2J) [} and continue execution from
there, until it encountered a [RTN]. When it executed the [RTN) instruc-
tion, execution would stop.

However, if the running program encounters a (G55 B3 (go to sub-
routine B) instruction, as shown in the lower illustration, it searches
downward for the next ((E0) [} and resumes execution. When it en-
counters a RTN) (return), program execution is once again transferred,
this time back to the point of origin of the subroutine, and execution
resumes with the next instruction after the G55 3.

As you can see, the only difference between a subroutine and a normal
next (RTN) halts a running program; after a (G55 or [GSE7), the next
[RTN] returns execution back to the main program, where it continues
until another [RTN) (or a [R/S)) is encountered. The same routine may
be executed by [E2) and (G55 any number of times in a program.

Example: A quadratic equation is of the formax? +bx +¢ =0. Its two

—b + Vb* — 4ac a
2a

nd

roots may be found by the formulas r, =

-b — Vb* — dac
2a

tions for r, and r,. The program below permits you to key the values

fora, b, and ¢ beneath user-definable keys I, (3, and [; the resultant

roots r, and r, are available by pressing) and 3. Were you to record

this program on a magnetic card, the card might look like this:

. Notice the similarity between the solu-

ro =

¢« Qurorsric Loors
B Tregl Tree” o wr o vra

Subroutines 199

Here is a complete program for calculating the two roots of a quad-
ratic equation:

Input a Input b
001 o 004) s]
002 1 005 2
003 TN 006 @ rN
Calculate r,

010 (Emy o]

011 2

012 CHS

013 2

o014 B |

015 1 These sections

of program

018 3 memory are

017 B8 identical.

018 4

019 B

020 B

021 O

022

023 1

024 2

025 B

026 B

027

Input ¢
007 (EWR C)
008 3
009 (RTN)
Calculate ry
028 0@
029 2
030 B
031 2
032 0O
033 1
034 3
035 B3
036 4
037 B
038 B
039)
040 B
041 1
042 2
043 B
044 B
045

Since the routine for calculating r, contains a large section of program
memory that is identical to a large section in the routine for calculating
ra, you can simply create a subroutine that will execute this section of
instructions. The subroutine is then called up and executed in both the
solution for r, and the solution for r,:

200 Subroutines

001 ey
002 1
003 [RTN|
004 CJp
005 2
h
06 @ Fm ~>l026 [(D8
007 D />
/] 027 2
008 EP3 /i R
009 h :
0 rm S 029 2
010) ® /
/] 030 0
011 GsB)8 |[-——— |/
-—2 031 1
012 ,
\ 032 3
013 1 \
014 2 / 033 3
015 | \\ 034 4
8 RN 035 [
016 B |
017 [\ 036 B
N ’/ \ 037 &)
018 (=) | | ‘-0 0 TN
019 Cas8 - ¥
020 B)
021 1
022 2
023 [
024
025 [RTN)

With the modified program, when you press [, execution begins with
the (L2 [instruction in step 010. When the E=3) 8 instruction in
step 011 is encountered, execution transfers to (2] 8 in step 026 and

computes the quantities —b and Vb® — 4ac, placing them in the X-
and Y-registers of the stack, ready for addition or subtraction. When
the [RTN) instruction in step 038 is encountered, execution transfers
back to the main routine and continues with the gJ instruction in step
012. Thus the root r, is computed and displayed, and the routine stops
with the [RTN] in step 017.

Subroutines 201

When you pressf3 , execution begins with (EJ & , transfers out to

execute the (2] 8 subroutine, and returns. This time Vb? — 4ac is
subtracted from —b, and root r, is computed. By using a subroutine,
seven steps of program memory are saved!

To key in the program and the subroutine:
Slide the W/PRGM-RUN switch wercm [[[[IllruN to W/PRGM.

Press Display
(S
@0
1 Stores a in R;.
=0
2 [oos 33 02} Stores b in R,.
006 35 22
(=) C) 007 31 25 13
3 008 33 03] ; Stores c in Rj.
009 35 22
(=] o) [070 31 25 14
(EERR] [o117 371 22 08
) 012 61 Calculates
L 013 34 01
2 o1 op) (o VP -l
_—— 1-
[x] 015 71 2a
& 016 81
017 35 22

202 Subroutines

Press Display
(R E 018 31 25 15
28 019 31 22 08
. z;‘; = 21 Calculates
2 02z o2] |2 Y4
2 T
(x| 023 71 a
& 024 81
025 35 22
(=08 026 31 25 08
2 027 34 02
[CHS 028 42
2 (029 34 02
a — 32 54 Subroutine places —b in
1 S —D1
RCL .
1 (031 3: O; Y-register and Vb? —4ac
3 (032 34 0 in X-register, ready for
(X (033 71 addition or subtraction.
4 034 04
a 035 71]
= 036 51
= 037 31 54
038 35 22

To initialize the program, you key ina and press I3, key in b and press
[, and key in ¢ and press [&. Then, to find root r,, press [&1. To find
root r,, press 3.

Run the program now to find the roots of the equation x2 +x — 6 =0;
of 3x2 +2x — 1 =0.

To run the program:
Slide the W/PRGM-RUN switch wprem [llIMIRuN to RUN.

Press Display

10

10 0]

6ED 6 BT

0 Calculates the first root,
r;.

a Calculates the second
root, rp.

0

20

| @B @

(D) Calculates r,.

o Calculates r,.

If the quantity b2 — 4ac is a negative number, the calculator will dis-
play and the running program will stop. For a more
efficient and accurate method of finding the roots of a quadratic equa-

tion, see the Polynominal Evaluation program in your HP-67
Standard Pac.

Note: When loading instructions into the calculator in
W/PRGM mode, you canload an' " =53] [through3d or
al) =21 through (3] instruction by simply pressing
the appropriate user-definable key(s). For example, to load
the instruction " [55) ¥, you can simply press [J ; the
keycode for. | C=5) 3,31 22 11, will appear in the display.
For clarity and ease of reference, however, the complete
keystroke sequence is always shown in this handbook.

204 Subroutines

Routine-Subroutine Usage

Subroutines give you extreme versatility in programming. A sub-
routine can contain a loop, or it can be executed as part of a loop.
Another common and space-saving trick is to use the same routine
both as a subroutine and as part of the main program.

Example: The program below simu-
lates the throwing of a pair of dice,
pausing to display first the value of one
die (an integer from 1 to 6) and then
pausing to display the value of the
second die (another integer from 1 to
6). Finally the values of the two dice are
added together to give the total value.

The *‘heart’’ of the program is a random number generator (actually
a pseudo random number generator) that is executed first as a sub-
routine and then as part of the main program. When you key in a
first number, called a “‘seed’’, and press [, the digit for the first die
is generated and displayed using the 7 (5] routine as a subroutine.
Then the digit for the second die is generated using the same routine
as part of the main program.

To key in the program:
Slide the Program Mode switch weram [[[Illrun to W/PRGM.

Press Display

Jal
iy

002 31 43
0 003 33 0
B G906 004 32 22 15| (3 executed first as

subroutine.

Subroutines 205

NG|

0

9 007 09

9

7

a

0 ()

0 012 33 00

6

(%] (2] then executed as a

1 routine.
)

(0 Ny

(h] (019 35 72

1 020 33 61 01

1 021 34 01

0 022 35 22

Now slide the W/PRGM-RUN switch to RUN and ‘‘roll’’ the dice
with your HP-67. To roll the dice, key in a decimal ‘‘seed’’ (that
is, 0 <n < 1). Then press 3. The calculator will display first the
number rolled by the first die, then the number rolled by the
second, and finally, when the program stops, you can see the total
number rolled by the dice. To make another roll, key in a new seed
and press (A again.

You can play a game with your friends using the ‘‘dice.’” If your first
“roll’’ is 7 or 11, you win. If it is another number, that number
becomes your ‘‘point.”’ You then keep *‘rolling’’ (keying in seeds and
pressing &¥) until the dice again total your point (you win) or you
roll a 7 or an 11 (you lose). To run the program:

Slide the Program Mode switch werm [lllIrRuN to RUN.

Press Display

2315478 13 Your point is 10.
.333589713 (5.] You missed your point.
.9987562 Y Missed it again.
.9987563 3 Congratulations! You

win.

Now try it again.

Press Display

.21387963 I3 Your point is 4.
.6658975 13 7 Whoops! You lose.

Subroutine Limits

A subroutine can call up another subroutine, and that subroutine can
call up yet another. Subroutine branching is limited only by the num-
ber of returns that can be held pending by the HP-67. Three subroutine
returns can be held pending at any one time in the HP-67. The dia-
gram below should make this more clear.

Three returns can be pending.

Main Program

@o | {@o| {@Oe /O

@]o)
@s]o)

RTN RTN) [RTN]

The calculator can return back to the main program from subroutines
that are three deep, as shown. However, if you attempt to call up
subroutines that are four deep, the calculator will execute only three
returns:

Only three returns can be pending...
Main Program

@0 m]o @ @e @@
@E
@ P @e
@
RTN RTN RTN) [RTN)

f— ...s0 execution will stop here.

any number of times. Also, if you press [§ through [@, 7 (Z] through

(8, (7 =3 I through [=9 @, (7 =3 0 through [=3 9,
or [} (G527 (@ through £} ([CEE1(E) from the keyboard, all pending
[RTN] instructions are forgotten by the calculator.

If you are executing a program one step at a time with the key
and encounter a (G=5) or (G52] instruction, the calculator will execute
the entire subroutine before continuing to the next step. However,
only one [RTN] instruction may be executed as the result of a [GZ5) or
(G5 instruction during single-step execution, so if a program con-
tains a subroutine within a subroutine, execution will not return to the
main program during execution.

208

Subroutines

Problems

1.

Look closely at the program for finding roots r; and r,
of a quadratic equation (page 200). Can you see other instruc-
tions that could be replaced by a subroutine? (Hint: look at steps
013 through 016 and steps 021 through 024.) Modify the pro-
gram by using another subroutine and run it to find the roots of
x2+x—6=0;0f3x2+2x — 1 =0.

(Answers: 2, —3; 0.33, —1)

How many more steps of program memory did you save?

The surface area of a sphere can be calculated according to the
equation A = 472, where r is the radius. The formula for

3
finding the volume of a sphere is V = 4% . This may also be
r XA
3

Create and load a program to calculate the area A of a sphere
given its radius r. Define the program with (20 ¥ and [RTN) and
include an initialization routine to store the value of the radius.
Then create and load a second program to calculate the volume

r XA

expressed as V =

. Define this sec-

V of a sphere, using the equationV =

ond program with (=) [EJand [RTNJ, and include the instruction
(E=3 (1 to use a portion of program E¥ as a subroutine
calculating area.

Run the two programs to find the area and volume of the
planet earth, a sphere with a radius of about 3963 miles. Of the
earth’s moon, a sphere with a radius of about 1080 miles.

Answers: Earth area = 197359487.5 square miles
Earth volume =2.6071188 X 10! cubic miles
Moon area = 14657414.69 square miles
Moon volume = 5276669290 cubic miles

Subroutin 209

Create, load, and run a program that will display all permuta-
tions of any three integers that you have stored in registers R,,
R,, and R;. For example, all permutations of the integers 1, 2,
and 3 might be displayed as:

123
132
213
231
312
321

The following subroutine will cause the digits you recall from
R;, R;, and R to be displayed as a permutation in the order you
have recalled them. Use the subroutine and the flowchart on the
following page to help you create and load the program.

D1
1
0
0
x|
X3y This subroutine pauses to
1 display numbers recalled into
0 the Z-, Y-, and X-registers of
x] the stack as nnn.
RTN)

The program should recall the contents of storage registers R,
R;, and R; into the Z-, Y-, and X-registers of the stack and then
use the ‘‘display nnn’’ subroutine to show them in the order that
they are recalled.

210 Subroutines

Recall
R; R, R,.

Pause to
display nnn.

Recall
R, R; R,

Pause to
display nnn.

Recall
R: R, R;.

Pause to
display nnn.

Recall
R, R R,.

Pause to
display nnn.

Recall
R; Ry R,.

Pause to

[-%
°
o
<
3
E
2

Recall
R, R; R,

Pause to
display nnn.

When you have created and loaded the program, store the digits
5, 7, and 9 into storage registers R,, R,, and Rj, respectively.
Then run the program to show all the permutations of these three
numbers.

Answer: 579
795
957
597
759
975

Section 11
Controlling the I-Register

The I-register is one of the most powerful programming tools avail-
able to you on your HP-67. In a preceding section, Storing and
Recalling Numbers, you learned about the use of the I-register as a
simple storage register, similar to registers R, through Ry, R, through
Rg, and Rg, through Rgg. And of course, you can always use the
I-register this way, as another storage register, whether you are using
it as an instruction in a program or operating manually from the
keyboard.

Using the instructions (ST1], [, and (xx1] in conjunction with other
instructions, you can specify the storage register addresses of and
M, the label addresses of 1), (], and (C-21), or the number of
digits displayed by the EE3 instruction. By storing a negative number
in the I-register, you can even transfer execution to any step
number of program memory. The (=3 and (3 instructions
permit you to increment (add 1 to) or decrement (subtract 1 from)
the current value in I, while and allow you to incre-
ment or decrement any storage register. These are features
that you will find extremely useful in controlling loops.

Storing a Number in I

To store a number in the I-register, you can use the @ (ST1) operation.
For example, to store the number 7 in the I-register:

Ensure that the W/PRGM-RUN switch werem ll[[[IRun is set to
RUN.

Press Display

70 79

213

To recall a number from the I-register into the displayed X-register,
you use [[3 (RcY :

Press Display
Q) (rect 7.00 The number stored in I is

recalled.

Exchanging x and 1

In a manner similar to the and (C-3) operations, the [[§ (*x1] oper-
ation exchanges the contents of the displayed X-register with those of
the I-register. For example, key the number 2 into the displayed
X-register and exchange the contents of the X-register with those of
the I-register now:

Press Display

2 2.
[h JEX) 7.00 Contents of X-register

and I-register exchanged.

When you pressed [xx1] , the contents of the stack and the I-register
were changed...

... from this to this.

T 0.00 T 0.00

Y4 0.00 y4 0.00

Y 7.00 Y 7.00

X [2.00 Display X 7.00 Display

3
700 1 z%0 1

To restore the X-register and I-register contents to their original
positions:

Press Display
» JE

Incrementing and Decrementing
the I-Register

You have seen how a number can be stored in the I-register and then
changed, either by storing another number there, or by using the
@ (xx1 operation.

You will find either of these methods useful, whether you are
utilizing them as instructions in a program or using them manually
from the keyboard.

Another way of altering the contents of the I-register, and one that
is most useful during a program, is by means of the =2
(increment 1, skip if zero) and (T3 (decrement I, skip if zero)
instructions. These instructions either add the number 1 to (increment)
or subtract the number 1 from (decrement) the I-register each time
they are executed. In a running program, if the number in the
I-register has become zero, program execution skips the next step after
the (52) or (027 instruction and continues execution (just like a false
conditional instruction).

The (&2 and (C=J instructions always increment or decre-
ment first; then the test for zero is made. For test purposes, numbers
between but not including —1 and +1 are the same as zero.

Example: Here is a program that illustrates how (=2 works.
It contains a loop that pauses to display the current value in the
I-register, then uses the [* (2] instruction to increment that value.
The program will continue to run, continually adding one to and
displaying the contents of the I-register, until you press (or any
key) from the keyboard.

To key in the program:
Slide the W/PRGM-RUN switch wPrcm [[I[IRUN to W/PRGM.

Press Display
(e,
Do
(RCT Recalls I-register
contents.
003 35 72| Pauses to display

contents.

216 Controlling the I-Register

Press Display
(= 004 31 34| Adds 1 to I-register.

(A 005 22 11| If contents of I-register
are not zero, execution
transfers back to (2] 9.

1 006 01 If contents of I-register
are zero, 1 is placed in
I-register.

(71 007 35 33

(A 008 22 11

RTN) 009 35 22

Now run the program beginning with a value of O in the I-register.
Stop the program after five iterations or so by pressing (R/S].

Slide the W/PRGM-RUN switch werem lIIRun to RUN.
Press Display

o@ sty Zero stored in I-register.
(A 0.00
1.00

I

4.00
R/S 5.00

Although the (£2] and O3] instructions increment and decrement the
I-register by 1, the value of the I-register need not be a whole
number.

For example:

Press Display

5.28 @5 0

(4]
-1.28

R/S 1.00

In practice, you will find that you will usually use (2] and (=3 with
numbers that are integers, since these instructions are most useful
as counters—that is, to control the number of iterations of a loop—
and to select storage registers, subroutines, or display settings.
(More about using the I-register as a selection register later.)

The (C=3) (decrement I, skip if zero) instruction operates in the same
manner as the increment instruction, except that it subtracts, rather
than adds, one each time it is used. When a running program
executes an (C=3 instruction, for example, it subtracts 1 from
the contents of the I-register, then tests to see if the I-register is 0.
(A number between +1 and —1 tests as zero.) If the number in the
I-register is greater than zero, execution continues with the next step
of program memory. If the number in the I-register is zero, the
calculator skips one step of program memory before resuming
execution.

Example: The island of Manhattan
was sold in the year 1624 for $24.00.
The program on the next page shows
how the amount would have grown
each year if the original amount had
been placed in a bank account drawing
5% interest compounded annually. The
number of years for which you want to
see the amount is stored in the
I-register, then the (3 instruction
is used to keep track of the number of
iterations through the loop.

Were you to prepare a magnetic card to store this program, it might
look like this:

¢ MANHATTAN VALVE o
7 . o » -

218 Controlling the I-Register

To key in the program:
Slide the W/PRGM-RUN switch weram [[[[IlllRuN to W/PRGM.

Press Display
(e
Mo
1 003 01
6 004 06
2 005 02]
4 006 04] } Initialization routine.
1 007 33 01
2
4
30 2 010 33 02
o
g o)
2
5
@ 015 31 82 Counting loop, con-
2 ;m trolled by I-register
1 _ 017 01 and D
i (078 55 67 01)
s3] 019 371 33]
(6) 020 22 12]
1 021 34 07| «When value in I becomes
(Dsp K] 022 23 00 zero, execution skips to
023 35 72| here, and year and
2 024 34 02 amount are displayed.
32 025 23 02
026 35 72

027 35 22

To run the program, key in the number of years for which you want
to see the amount. Press B3 to store the number of years in the
I-register and otherwise initialize the program. Then press B to run
the program.

For example, to run the program to find the amount of the account
after 5 years; after 15 years:

Slide the W/PRGM-RUN switch weram [l[[[Jrun to RUN.

Press Display

s 24.00 Program initialized.
(8] 1629.
30.63 After five years, in 1629,

the account would have
been worth $30.63.

158 24.00 Program initialized.
(8 1639.
49.89 After 15 years, in 1639,

the account would have
been worth $49.89.

How it works: When you key in the number of years and initialize
the program by pressing I3, the number of years is stored in the
I-register by the (T instruction. The year (1624) is stored in primary
storage register R;, and the amount ($24.00) is stored in primary
storage register R,.

When you then press B3, calculation begins. Each time through the
loop, 5% of the amount is computed and added to the amount in
R,, and one (1) year is added to the year in R;. The (=7 instruction
subtracts one from the I-register; if the value in I is not then zero,
execution is transferred back to (-] 3 and the loop is executed again.

The loop continues to be executed until the value in the I-register
becomes zero. Then execution skips to the 1 instruction in
program memory step 021. Execution continues sequentially down-
ward from step 021, recalling the current year from R, and formatting
and displaying it, then recalling the current amount from R, and for-
matting and displaying that following the year.

220 Controlling the 1-Reqister

To see what the amount in the account would be in 1976, you can
key in the number of years from 1624 to 1976 (the number is 352)
and initialize and run the program. (This will take 4-5 minutes to run,
plenty of time to go get a cup of coffee.)

Problems

1. When you press I3, the program below stores in primary regis-
ter Ry an integer that you have keyed in, then decrements the
value in Ry using storage register arithmetic. Each time through
the loop, the program pauses to show the current value in R,.
When the value in Ry reaches zero, the program stops. Write,
load, and run a program that uses the I-register and =3
instead of Ry and [(=) to give the same results.

Go
9
D1
o
1
89
9
3]
1
@ RN
2. Write and load a program using (7] to illustrate how an initial
deposit of $1000 would grow year-by-year at a yearly com-
pound interest rate of 5.5%. The program should display the
current year (and subsequent years), followed by the value of the
account for each year. The program should contain an infinite
loop that you can stop by pressing from the keyboard

whenever you wish. Run the program to display the years and
amounts for at least 5 years.

3. Write, load, and run a program that will count from zero up to a
limit using the (Z7) instruction, and then count back down to
zero using the (0= instruction. The program can contain two
loops, and it can contain a conditional instruction besides the
(2 and (O3 instructions. Use the flowchart on page 221 to
help you.

Controlling the I-Register

221

Pause to
display I.

Recall I.

Pause to
display I.

Decrement 1.

Pause to
display I.

Section 12

You have seen how the value in the I-register can be altered using
the [s11), (xx1], (57) and C57) operations. But the value contained in
the I-register can also be used to control other operations. The ([f
(indirect) function combined with certain other functions allows you
to control those functions using the current number in the I-register.
(@ uses the number stored in the I-register as an address.

The indirect operations that can be controlled by the I-register are:

EE3 [@, when the number in the I-register is O through 9, changes
display formatting so that the number in the display contains the
number of decimal places specified by the current number in the
I-register.

(@, when the number in the I-register is O through 25, stores
the value that is in the display in the primary or secondary storage
register addressed by the current number in the I-register.

(@, when the number in the I-register is O through 25, recalls
the contents of the primary or secondary storage register addressed
by the current number in the I-register.

@, 8@, £33 [@, and £ [@, when the number
in the I-register is O through 25, perform storage register arithmetic
upon the contents of the primary or secondary storage register
addressed by the current number in the I-register.

(520, when the number in the I-register is O through 25, in-
crements (adds 1 to) the contents of the primary or secondary storage
register addressed by the current number in the I-register. In a running
program, one step is skipped if the contents of the addressed register
are then zero.

223

224 Using the 1-Register for Indirect Control

3 ([-Z0), when the number in the I-register is O through 25, de-
crements (subtracts 1 from) the contents of the primary or secondary
storage register addressed by the current number in the I-register. In
arunning program, one step is skipped if the contents of the addressed
register are then zero.

(@, when the number in the I-register is O or a positive 1 through
19, transfers execution of a running program sequentially downward
through program memory to the next label specified by the current
number in the I-register.

(@, when the number in the I-register is a negative number
between —1 and —999, transfers execution of a running program
back in program memory the number of steps specified by the current
negative number in the I-register.

(E=2 @, when the number in the I-register is O through 19, transfers
execution of a running program to the subroutine specified by the
current number in the I-register. Like a normal subroutine, when a
(RTN] is then encountered, execution transfers forward and continues
with the step following the (C-7) [@ instruction.

(C=2 [@, when the number in the I-register is a negative number
between —1 and —999, transfers execution of a running program
back in program memory the number of steps specified by the current
negative number in the I-register. Execution from that point is like a
normal subroutine, so if a [RTN instruction is then encountered,
execution is transferred once again, this time to the next instruction

after the O ().

If the number in the I-register is outside the specified limits when the
calculator attempts to execute one of these operations, the display will

show . When using(@ , =20, or (C_(1), the calculator

uses for an address only the integer portion of the number currently
stored in the I-register. Thus, 25.99998785 stored in the I-register
retains its full value there, but when used as address [, it is read
as 25 by the calculator.

1 In all cases using the [@ (indirect) function, the HP-67
looks at only the integer portion of the current number

stored in the I-register. i

Using the I-Register for Indirect Control 225

You can already see that using the I-register and (), ("__(), and
in conjunction with these other functions gives you a tremen-
dous amount of computing power and exceptional programming
control. Now let’s have a closer look at these operations.

Indirect Display Control

You can use the current number in the I-register in conjunction
with the EE3 key to control the number of decimal places to which a
number is displayed and printed. When EE3 (@ is performed, the
display is seen rounded to the number of decimal places specified by
the current value contained in the I-register. (The display is seen
rounded, but of course, the calculator maintains its full accuracy, 10
digits multiplied by 10 raised to a two-digit exponent, internally.)
The number in the I-register can be any value, positive or negative,
from O through 9. The EE3 (@ operation is most useful as part of
a program, but it can also be executed manually from the keyboard.

For example:
Slide the W/PRGM-RUN switch wprem ll[[JrRun to RUN.

Press Display

50 (571 5.00 :

0.00 Normal FIX 2 display.

B @ 0.00000 FIX 5 display specified
because of the number 5
that is stored in the
I-register.

o0 (s71

osp)] FIX 9 display selected by
the number in the
I-register.

Thus, by controlling the number in the I-register, you can control
many different display options with very few instructions in a
program.

226 Using the 1-Register for Indirect Control

Example: The following program pauses and displays an example of
each display format that is available on your HP-67. It utilizes a
subroutine loop containing the 0=2) and EE3 [instructions to auto-
matically change the number of decimal places printed.

To key in the program:
Slide the W/PRGM-RUN switch weraM [[[IIlRuN to W/PRGM.

Press Display
Cueaoy]
o 00131 25 11 Initializes program.
[002 44
(9] 003 32 23] | Ilustrates scientific
=20 004 31 22 12] | notation.
(end 005 35 23 } Illustrates engineering
20 006 31 22 12]J notation.
3 007 31 23 || Specifies fixed point
o (008”37 25 12] | notation.
0 009 9 Initializes I-register to 9
[h] 010 i '
Do 011 31 25 00
Sets displayed decimal
h
a — 35 34 places to current value in
B @ 013 23 24
I-register.
0 014 35 72
3 015 31 33
0 [o16 22 00
017 35 34
B @ 018 23 24
019 35 72

020 35 22

Using the I-Register for Indirect Control 227

To run the program and see the types of display formatting available
on your HP-67:
Slide the W/PRGM-RUN switch wieram [ll[[[Jrun to RUN.

Press Display

o
Scientific notation.
3.000 00
2.00 00
1.0 00
0. oo:
[5.000000000 00]
(5.00000000_00]
6.000000 00
Engineering notation.
2.00 00
1.0 00
0. 00]
[5.000000000]
8.00000000
7.0000000
[4.0000] Fixed point notation.
Gow |
E—

228 Using the I-Register for Indirect Control

If a number containing a fraction is stored in the I-register, B53
(@ reads only the integer portion of the number. Thus, the I-register
can contain a number as large as 9.999999999, and the EE3 (i)
operation will still execute. For example:

Press Display

9.999999999
(h] Display is rounded, but

number maintains its
original value inside the
calculator.

c3Jo [9.999999999 Since the HP-67 is now

[9.00000000 in FIX mode, executing
(8.0000000 the subroutine loop yields
7.000000 the illustration of fixed
6.00000 point notation.

5.0000
4.000

[t

The HP-67 displays if the number in the I-register
is greater than 9.999999999 when a (53 (@) instruction is executed.
For example:

Press Display
00

3o

Using the I-Register for Indirect Control 229

As with all error conditions, pressing any key clears the error and
returns to the display the last value present there before the error.

Press Display

RIS

By using [F3J @, you have tremendous versatility in the types
of output formats your HP-67 produces. With (553 (f) instructions,
for example, the width of a displayed number (that is, the number of
characters displayed) can be made dependent on data.

Indirect Store and Recall

You can use the number in the I-register to address the 26 storage
registers that are in your HP-67. When you press (@ the value
that is in the display is stored in the storage register addressed by the
number in the I-register. (@) addresses the storage registers in a
like manner, as do the storage register arithmetic operations
@. 80 B3 @, and B @- (If you have forgotten
the normal operation of the storage registers, or of storage register
arithmetic, go back and review section 4, Storing and Recalling

Numbers, in this handbook.)

When using @ (@ or any of the storage register arithmetic
operations utilizing the [fj) function, the I-register can contain numbers
positive or negative from O through 25. The numbers O through 9
address primary storage registers R, through Rg, while numbers from
10 through 19 will address secondary storage registers Rg, through
Rgo. (You do not have to use the (2] function with (@ -) Numbers
20 through 24 address storage registers R, through Rg, and with the
number 25 in the I-register, () addresses the I-register itself!

The diagram on the following page should illustrate these addresses
more clearly.

230 Using the 1-Register for Indirect Control

Primary Registers

@ Address

I [Jo2s

Re[] 24

Ro[_____] 23

Re[] 22

R[] o

R[] 20
Secondary Registers

(@ Address
Rs, (R 19
Re, B 18
R, [17
R EE 16
R.; EEE 15
Ry, T 14
Rs, [13
Rs. L 12
Rs: [11
Rs, EEEEEE 10
([Address

RR[____]9

Re[_____ 8

R 17

Re[_____16

R 15

N—"

R 13

R]2

R

R o

By using the calculator manually, you can easily see how (@ and
(@ are used in conjunction with the I-register to address the
different storage registers:

Ensure that the W/PRGM-RUN switch weram lIMIRuN is set to

RUN.
Press

(CLx J OSP J]

(CLREG]

=
(CLREG)

50 (s1y

1.23 G0 @

240 sty

85083 @

120 b1

77 E33 43
G8 @

Display

Clears all storage
registers, including the
I-register, to zero.

o
(<)

N
W

Stores the number S in the
I-register.

Stores the number 1.23 in
the storage register
addressed by the number
in I—that is, storage
register Rs.

24.00 This number stored in the
the I-register.
85083.00 This number stored in the

storage register (Rg)
addressed by the current
number (24) in 1.

12.00 Stores the number 12 in
the I-register.

77. 43

7.700000000 44| Stores the number 7.7 X
10** in the storage register
addressed by the number
in [—that is, in secondary
storage register Rg,.

Notice that the number was stored directly in secondary storage
register Rg,. You do not have to use the (C=5) function to access the
secondary storage registers when using the [@ function.

232 Using the I-Register for Indirect Control

To recall numbers that are stored in any register, you can use the
(recall) key followed by the number or letter key of the register
address. (For secondary storage registers, use the (-] function to
exchange contents of the primary and secondary registers before using
the function.) However, when the address currently stored in the
I-register is correct, you can recall the contents of a storage register
by simply pressing ([(or (@). For example:

Press Display

5 Contents of storage
register R; recalled to
displayed X-register.

@ Since the I-register still
contains the number 12,
this operation recalls the
contents of the storage
register (secondary
register Rg,) addressed by
the number 12.

By changing the number in the I-register, you change the address
specified by @ or [@. For example:
Press Display

240 24.00
@ 85083.00 Contents of storage

register Rg recalled to
displayed X-register.
@ PR
@ Contents of storage
register R; recalled to
displayed X-register.

Storage register arithmetic is performed upon the contents of the
register addressed by I by using @, 8 M, 8m,
and £ [@. Again, you can access any storage register, primary
or secondary—you never have to use the (°-) function when using
the I-register for addressing. For example:

Press Display

1 ® One added to number in

storage register (R;)
currently addressed by
the I-register.

Using the I-Register for Indirect Control 233

Press Display

@
X siof <o)
@
5

Naturally, the most effective use of the I-register as an address for
and is in a program.

Example: The following program uses a loop to place the number
representing its address in storage registers R, through Ry, Rgo
through Rgg, and R, through Rg. During each iteration through the
loop, program execution pauses to show the current value of I.
When I reaches zero, execution is finally transferred out of the loop
by the [([C=7 instruction and the program stops.

To key in the program:
Slide the W/PRGM-RUN switch WPRGM [[[IMllRUN to W/PRGM.

Press Display
(S
Do
(CLreq) 002 31 43
=
(CLReG) Program initialized.
2
5
(h BB
=31 Current value in I stored
(h] 009 35 34] ¢ in storage register
@ [o10 33 24]) addressed by).
(h] [o11 35 72| Pause to display current
value of I.
3 012 37 33| Subtract one from value
in I-register.
1 013 22 01] If 1#0, execute loop

again.

(h] 4 35 74 Otherwise, display the
contents of all the pri-
mary storage registers.

I
-

3] 015 31 42
(h] 35 74
3 1 31 42 Restores contents of

secondary storage
registers for possible later

o SIS
-
N ||

calculations.
(h] 18 35 34
[h] 019 35 22

When the program is run, it begins by clearing the storage registers
and placing 25 in the I-register. Then execution begins, recalling the
current value in the I-register and storing that number in the
corresponding address—for example, when the I-register contains the
number 17, that number is recalled and stored in the storage register
(Rs7) that is addressed by the number 17. Each time through the loop,
the number in the I-register is decremented, and the result is used
both as data and as an address by the (@ instruction. When the
number in the I-register reaches zero, execution transfers out of the
loop and the contents of all primary storage registers are displayed by
the automatic register review function.

To run the program:

Slide the W/PRGM-RUN switch wrrem IllIIRuN to RUN.
Press Display

(A] 25.00

24.00
etc.

I

Notice that the contents of the I-register have been decremented to
zero.

You do not have to address secondary storage registers Rg, through
Rgo indirectly by using (@ and (@M. In some cases,
in fact, using the (F=5) function in conjunction with @ and
(@ can be a powerful programming tool, since you can use the
same instructions to process two sets of data.

For example, suppose you had quantities A, A,, A3, A4, A5 stored
in primary storage registers R, through R;, and quantities B, B,, B3,
B,, and Bj stored in secondary storage registers Rg; through Rg;.

If you wanted to find the average value of: 4, + Az + ... An
B, B, B,

(where n =5, in this case) you could use (@ and (57 in con-
junction with the (5] function as shown in the program below.

To key in the program:
Slide the W/PRGM-RUN switch wercm [[[IllRuN to W/PRGM.

Press Display
(Sazze)
= 00131 25 13
5
(h] Sets number of iterations
through loop.
0 004 00
0
s
T8 M
(h] A, and B, brought into
=3 009 31 42] Y- and X-registers and
@ 010 34 24| | displayed.
(h] 011 35 72
)

/) Original contents of
secondary storage
registers restored to those
registers.

0 Total stored and updated
in register R,.
= 015 31 33

236 Using the I-Register for Indirect Control

8 016 22 08 If, after decrementing,
I has not reached zero,
execute the loop again.

0 017 34 00

5 018 05

& Otherwise, compute,

(DSP J°] 020 23 09] 1 format, and pause to dis-
] play average, and stop.

(DsP) 022 23 02

RTN 023 35 22

Now run the program for the following values of A and B.

A ; 73 81 97.6 115.9 244.8

B ‘ 21 47 68 102.88 179

First initialize the program by placing the values for B in secondary
storage registers Rg,; through Rg;s and the values for A in correspond-
ing primary registers R, through R;. To initialize and run the routine:

Slide the W/PRGM-RUN switch weram I run to RUN.

Press Display

21 6B 1
47 2 [47.00]
68 3 68.00 |
102.88 67 4

179 5 179.00

Using the I-Register for Indirect Control 237

()
73E0 1
81 G 2
97.6 GO 3
115.9 G0 4
244860 5

Now press [to run the program and display the data and the average.

Press Display

244.80

79,00 } Display A5 and Bj.

115.90

102.88 } Display A4 and B,.

97.60
68.00
81.00
47.00
13.00] Display A, and B;.
21.00

1.825808365 Display average in FIX 9.

1.83 Display average in FIX 2.

Although for this illustration we stored the data manually before
beginning, it would be a simple matter to create an initialization
routine that, when loaded into the calculator, would permit you to
key in data during a instruction. The routine could use the
(@ function to store the original data in the proper registers as you
keyed it in.

Indirect Incrementing and
Decrementing of Storage Registers

In section 11, you learned how to increment or decrement the
I-register by using the instructions (=2] and (23 . By using the number
in the I-register as an address, the instructions (52 and

increment or decrement the contents of the storage register
addressed by the number in I.

The indirect addressing of the storage registers for (52 and C2Dis
the same as that for () 8 (M@, and storage register arithmetic
using [@). When using (520) and =20, the calculator looks at
only the integer portion of the absolute value of the number stored
in the I-register. An attempted (520 or (=20 operation when the
number in I is 26 or greater results in an error condition.

(520 and (220 function very similarly to (5Z] and (C57. When an
(EZ0 or [2Z0) instruction is performed in a running program, the
calculator first increments (adds 1 to) or decrements (subtracts 1 from)
the contents of the storage register addressed by the number in the
I-register. If the contents of the storage register addressed by the
number in I are then zero (actually, if they are between —1 and +1),
the calculator skips one step. If the contents of the storage register
addressed are not then zero, execution continues with the next step
of program memory after the (5E20) or (0520 instruction.

Indirect Control of
Branches and Subroutines

Like display control using 53 [f) and addressing of storage registers
using @ and [, you can address routines, subroutines,
even entire programs, with the I-register.

To address a routine using the I-register, use the instruction @.
When a running program encounters a (@ instruction, execution
is transferred sequentially downward to the (L) that is addressed by
the number in the I-register. Thus, with the number 7 stored in I,
when the instruction (@) is encountered, execution is transferred
downward in program memory to the next ((:]) 7 instruction before
resuming.

Lo@eEn
GB O

> (tey
Naturally, you can also press (@ from the keyboard to begin
execution from the specified ((EJ.

Subroutines can also be addressed and utilized with the I-register.
When (G55 (i) is executed in a running program (or pressed from the
keyboard), execution transfers to the specified (L5 and executes the
subroutine. When a is then encountered, execution transfers back
to the next instruction after the (G55 ({i} and resumes. For example,
with the number 7 stored in the I-register, (G5 (i) causes execution of
the subroutine defined by ((£]) 7 and [RTN).

| | n@mo ||

= o |
| - A
Y

The simple-to-remember addressing using the I-register is the same
for (@ and (G=5) [@. If the I-register contains zero or a positive
number from 1 through 9, (@ addresses (5] O through (C50) 9.
When the number in I is a positive 10 through 14, (5] 3 through

240 Using the I-Register for Indirect Control

(2D @ are addressed, while positive 15 through 19 address (1) ()
through (C2C1) (E). Label addressing is illustrated below.

If the number @ or3 @

inlis: transfers execution to:
0 E
1 (R
2 0@
3 E0®
4 (RN
5 0B®
6 e
7 Com@
8 D@E
9 e
10 (WY A
11 [EERY 5
12 (Emy C |
13 [mEmy 0
14 (EmY €
15 nEa
16 oI
17 (o JIEN)
18 o JIE)
19 (o JIENE

Remember that the numbers in the I-register must be positive or
zero (negative numbers cause rapid reverse branching, which we will
discuss later), and that the calculator looks at only the integer portion
of the number in I when using it for an address.

Example: One method of generating pseudo random numbers in a
program is to take a number (called a ‘‘seed’’), square it, and then
remove the center of the resulting square and square that, etc. Thus,
a seed of 5182 when squared yields 26853124. A random number
generator could then extract the four center digits, 8531, and square
that value. Continuing for several iterations through a loop would
generate several random numbers.

Using the I-Register for Indirect Control 241

The following program uses the instruction to permit you to
key in a four-digit seed in any of three forms: nnnn, .nnnn, or nn.nn.
The seed is squared and the square truncated by the main part of the
program, and the resulting four-digit random number is displayed in
the form of the original seed: nnnn, .nnnn, or nn.nn.

A flowchart for the program might look like this:

Change to Change to
form nn.nn. form nn.nn.

Store 1 Store 2 Store 3
inl-register inI-register. in I-register.

Square
number.

Extract new
seed of
form .nnnn.

Change to Change to
LBL2 form nn.nn.

242 Using the I-Register for Indirect Control

The use of the (@ instruction lets you select the operations
that are performed upon the number after the main portion of the
program.

By storing 1, 2, or 3 in the I-register depending upon the format of
the seed, the program selects the form of the result after it is
generated by the main portion of the program. Although the program
shown here stops after each result, it would be a simple matter to

create a loop that would iterate several times, increasing the apparent
randomness of the result each time.

To key in the complete program:
Slide the W/PRGM-RUN switch werGm [[[[HIll RuN to W/PRGM.
Press Display

(SHTEY)
() A 001 31 25 11
EEX] 002 43
2 Changes nnnn to nn.nn.
1 Places 1 in X-register for
storage in 1.
sl m
oo 007 31 25 12
G 008 43
2 009 02] ¢ Changes .nnnn to nn.nn.
8 010 71
2 011 02| Places 2 in X-register for
storage in 1.
&0 0@
=
3 Places 3 in X-register for
storage in I.
e @)
016 35 33| Stores address of later
operation in I.
017 35 52| Brings nn.nn to

X-register.

Using the I-Register for Indirect Control 243

(9] Squares nn.nn.
e
2 020 02 | \ Truncates two final digits
8 of square.
@
(EEX] 023 43
4 Truncates two leading
a digits of square.
B 026 32 83
S0 @ 027 22 24| Transfers execution to
appropriate operational
routine.
01 028 31 25 01
G 029 43
4 Result appears as nnnn.
a 031 71
G o
(h] 033 35 22
D2
CEd 4 [035 23 04| ; Result appears as .nnnn.
(036 35 22
33 037 31 25 03
G [038 43
ZB Illg‘j Result appears as nn.nn.
0P] 041 23 02
(h] 042 35 22

We could also have used a subroutine for the digits for 100 (that is,
33 2) in steps 002-003, 008-009, 019-020, and 038-039, but we
have used this more straightforward program to illustrate the use of
the (@ instruction.

When you key in a four-digit seed number in one of the three formats
shown, an address (1, 2, or 3) is placed in the I-register. This address
is used by the @ instruction in step 027 to transfer program
execution to the proper routine so that the new random number is
seen in the same form as the original seed.

244 Using the I-Register for Indirect Control

Were you to record this program on a magnetic card, you might wish
to mark your card so that it looked like this:

(756000 RanlOom Numsee GCeveerrat

@) /] 2 47/72-2/a 2 a

Now run the program for seeds of 5182, .5182 and 51.82. To run the
program:

Slide the W/PRGM-RUN switch wrreM [lllllIRUN to RUN.

Press Display

51823 Random number gen-
erated in the proper form.

s1820

51.8203

The program generates a random number of the same form as the
seed you keyed in. To use the random number as a new seed (simu-
lating the operation of an actual random number generator, in which a
loop would be used to decrease the apparent predictability of each

succeeding number), continue pressing the appropriate user-definable
key:

Press Display
77.79 Each succeeding number
appears to be more

29.63 random.

With a few slight modifications of the program, you could have used
an' (=9 [@ instruction instead of the (@ instruction.

Rapid Reverse Branching

Using @ and C7) @, with a negative number stored in I,
you can actually branch to any step number of program memory.

Jsing the I-Re or 245
As you know, when a or () instruction is executed, the
calculator does not execute further instructions until it has searched
downward through program memory and located the next label
addressed by or (). When(E@ @ or (@ is executed
in a running program, with O or a positive 1 through 19 stored in
the I-register, the running program searches downward through
program memory until it locates the next (C0) addressed by the
number in I. Then execution resumes.

With anegative number stored in the I-register, however, execution is
actually transferred backward in program memory when @ or

(E=3 @ is executed. The calculator does not search for a label,
but instead transfers execution backward the number of steps
specified by the negative number in the I-register. (This is advanta-
geous because the search is often much faster than searching for a
label, and because you can thus transfer execution even though all
labels in the calculator have been used for other purposes.)

For example, in the section of program memory shown below, —12
is stored in the I-register. Then, when step 207, is executed,
the running program jumps backward 12 steps through program
memory to step 195 (that is, step 207 — 12 = 195), and execution
resumes again with step 195 of program memory.

193 (9
194 (3]
7 195 8]
196 (4]
197 (5
198
. 199 ()
With —12 stored
in I, execution 200
’ 201 ()
transferred backwards
202 (9
12 steps by 203 @
@ 204 (2)
205 (5
206 ([sT1]
207 @
208 ()

When @ has been performed in a running program, execution
then continues until the next (RTN or instruction is encountered,
whereupon the running program stops. Thus, if you pressed [with
the instructions shown above loaded into the calculator, the
instructions in steps 201 through 207 would be executed in order.
Then the program would jump backward and execute step 195 next,
continuing with 196, 197, etc., until the (RTN instruction was
encountered in step 200. The running program would then stop.
With a negative number stored in the I-register, =9 @ also
transfers execution backward the number of steps specified by the
number in I. However, subsequent instructions are then executed as
a subroutine, so when the next [RTN instruction is encountered,
execution transfers back to the instruction following the (G5 ()
instruction (just like a normal subroutine would be executed.)

The section of program memory below shows how [C55) (i) operates.
If you press [, —12 will be stored in the I-register. When [l [E5)
[@ is then executed a running program jumps back 12 steps from
step 207 and resumes execution with step 195. When the(RTN (return)
instruction in step 200 is encountered, execution returns and
continues with step 208.

193
194
195
196
197

198
With —12 stored 199

in I, execution 200
transferred 201
backwards 202
12 steps by 203
Cam. 204
205
206
207
208
209

®

 Then the [RTN
instruction causes
a return, and

cie/als(ElRElklcllelE

o
2
n

execution
resumes with
step 208.

DDQ@

Rapid reverse branching using (@ and [[C23)) are extremely
useful instructions as part of your programs. Rapid reverse branching
permits you to transfer execution to any step number of program
memory. With a negative number stored in the I-register, the resulting
step number can always be found by combining the negative number
in I with the step number of the (@ or I (=3 @ instruction.

Execution can even be transferred backward past step 000. To find
the resulting step number of program memory, find the sum of the
negative number in the I-register and the step number containing the
@ or (=3 @ instruction, then add 224. Thus, if the I-register
contained —12 and a (@ instruction were encountered in step
007, execution would be transferred to step 219 of program memory
(7 — 12 + 224 = 219).

Example: Named after a 13'"-century
mathematician, the Fibonacci series is
a series of numbers that expresses many
relationships found in mathematics,
architecture, and nature. (For example,
in many plants, the proliferation of
branches follows a series of Fibonacci
numbers.) The series is of the form
0,1,1,2,3,5,8, 13 ..., where each
element is the sum of the two preceding
elements.

The program on page 248 contains an infinite loop that generates and
displays the Fibonacci series. Although you normally would probably
not set up a single routine that began in step 211 and continued
through step 008, the routine illustrates how the instruction
coupled with a negative number in the I-register can transfer program
execution back in program memory, even past step 000.

248 Using the I-Register for Indirect Control

211 (D
212 (1)
213 (9
214
215
216 (@
217 ©
218 (1
219 B® ()
220
., 221 @]
| 222 ®
| 223
| 224
Execution transferred | 001 Q)
—10 steps. ! 002 [N (9 L Infinite loop.
1 003)
| 004
| oos
l 006 ®
| 007 ERDm
008 [RTN -

When the program is run, steps 212 through 215 store —10 in the
I-register. Thereafter, execution of the (@ instruction in step 007
causes the running program to jump back 10 steps and resume
execution with step 221 (that is, 007 — 10 + 224 = 221). Thus, an

infinite loop is set up that generates and displays the Fibonacci series
until you stop the program by pressing (or any key) from the
keyboard.

To load the complete program, you must first load the instructions
in steps 001 through 008, then go to step 210 and load the instructions
into steps 211 through 224. To load the program into the calculator:

Using the I-Register for Indirect Control 249

Slide the W/PRGM-RUN switch WPrGM [[IMIMRUN to W/PRGM.

Press Display

cProm
0 001 33 00
0 002 34 00
RCL B 003 34 01
004 61
[005 35 72
1 006 33 01
o
0 (RN 008 35 22

Now go to step 210 and continue loading instructions, beginning with
the (20 B contained in step 211:

Press Display
.210 Sets calculator at
step 210.

E0

1

0 213 00

0

0

1 218 01

1

0 221 34 00

1

[223 61

[224 35 72

Now switch to RUN mode and run the program. Press (or any
key) to stop the program after you have seen how quickly the
Fibonacci series increases. To run the program:

Slide the W/PRGM-RUN switch wrram [ll[Mrun to RUN.

Press Display

(A) 1.00
1.00

2.00
3.00
5.00
8.00
13.00
21.00
34.00

89.00
144.00
233.00
377.00
R/S 610.00

il

Each element in the Fibonacci series is the sum of the previous two
elements in the series.

Rapid reverse branching can be specified with numbers from —1
through —999 in the I-register. If the magnitude of the number in I
is greater than 224, the search continues backward through program
memory the number of steps specified. If you attempt to execute
@ or C=5) [@ when the magnitude of the integer portion of the

negative number in I is greater than 999, the calculator displays
Fror]

Problems

1. a. Create and load a program using (°7] and @ that
permits you to key in a series of values during successive
pauses. The values should be stored in storage registers R,
through Ry, R, through Rge, and R, through Rg in the order
you key them in. Use the flowchart on page 251 to help you.

Using the [-Register for Indirect Control

251

Clear all

storage registers.

Clear display.
Pause to key
in number.

Number
in display
=07

Store number in
storage register
addressed by (i).

252

Using the 1-Register for Indirect Control

b. Now create and load a program immediately after the
first one that will recall and display the contents of each
storage register in reverse order (that is, display Rg first,
then Rp, etc.). The program should stop running after it has
displayed the contents of R,.

Run the program you loaded for Problem 1a, keying in a series
of 25 different values. Then run the program you loaded for 1b.
All 25 values should be shown, but the last one you keyed in
should be the first displayed, etc.,

Modify the Random Number Generator program on pages 242-
243 to use (23 (@) instead of (@ for control. Run the
program with the same seed numbers to ensure that it still
runs correctly.

One curious fact about the Fibonacci series is that the quotients
of successive terms converge to a common value. This value
was known to the ancient Greeks as the ‘‘golden ratio’’ because
it expressed the ideal ratio of width to length that gave the most
aesthetically appealing building or room.

Create, load, and run a program
that will yield this ideal ratio.
You should be able to calculate
and display each successive ratio
(for example, 2/3, 3/5, 5/8, 8/13,
etc.,) until the series converges to
the value of the golden ratio.
Create a loop by using the rapid
reverse branching power of the
(@ instruction with a nega-
tive number in the I-register. Use
the flowchart on page 253 to help
you.

When you run the program and are satisfied that the golden
ratio has been calculated, you can press from the keyboard
to stop the infinite loop. (The value of the golden ratio should be
0.618033989.)

Using the I-Register for Indirect Control 253

Store negative
address inl.

Store 0in R,.

Add R, and R,.

Store result in R,.

Divide R, by R,.

Pause to
display result.

Add R, and R,.

Store result in R,.

Divide R, by R,.

Display result.

GTO
(i)

Section 13

Besides the conditionals ((X=)), (=0), etc.) and the tests for zero
(2, @2, EZ0), =), you can also use flags for tests in your
programs. A flag actually is a memory device that can be either SET
(true) or CLEAR (false). A running program can then test the flag
later in the program and make a decision, depending upon whether
the flag was set or clear.

There are four flags, FO, F1, F2, and F3, available for use in your
HP-67. To set a flag true, use the instruction [SF] (set flag) followed
by the digit key (0], (1, (2], (3)) of the desired flag. The instruction
CFl (clear flag) is used to clear flags.

When using flags, decisions are made using the instruction (is
flag true?) followed by the digit key ((0], (1], (2], (3)) specifying the
flag to be tested. When a flag is tested by a [3 [F2) (0] instruction,
the calculator executes the next step if the flag is set (this is the ‘DO
if TRUE”’ rule again). If the flag is clear, the next step of program
memory is skipped before execution resumes.

Is flag F1 true?

[RG]
If YES, If NO, skip
continue execution one step before
with next step. resuming execution.

255

256 Flags

Command-Cleared Flags

There are two types of flags. Flags FO and F1 are command-cleared
flags—that is, once they have been set by an (3 (SF) 0 or @ (SF] 1
operation, they remain set until they are commanded to change by the
3 (7] 0 or @ [CF) 1 operations. Command-cleared flags are generally
used to remember program status (e.g., are outputs desired?).

Test-Cleared Flags

Flags F2 and F3 are test-cleared flags. They are cleared by a test
operation. For example, if you had set flag F2 with an [} [SF) 2 opera-
tion and then it was tested later in a program with an ([} 2 instruc-
tion, flag F2 would be cleared by the test—execution would continue
with the next step of program memory (the ‘DO if TRUE’’ rule),
but the flag would then be cleared and would remain cleared until it
was set again. The test-cleared flags are used to save the [J
operation after a test. (However, test-cleared flags can be cleared by
the (3 operation, if desired.)

Besides being a test-cleared flag, flag F3 alone is set by digit entry—
that is, as soon as you key in a number from the keyboard, flag F3
is set. It is also set when the magnetic card reader is used to load data
into the storage registers from a card. Even though you do not test or
use flag F3 in a program, it is nevertheless set by digit entry from the
keyboard or data loading from the magnetic card reader. Flag F3 is
also set if the key is used in RUN mode to single step through a
program that contains a digit entry as soon as the step containing the
digit is reached.

All flags are cleared when the HP-67 is first turned ON or when

2557 is pressed in W/PRGM mode. Whenever a magnetic pro-
gram card is passed through the card reader, the flags are set or cleared
according to status information recorded on the card.

Now look at the way these flags can be used in programs.

Flags 257

Example: The following program contains an infinite loop that
illustrates the operation of a flag. (In this case, the flag used is
command-cleared flag F0.) The program alternately displays all 1's
and all 0’s by changing the status of the flag, and hence, the result
of the test in step 007, each time through the loop. A flowchart for
the simple program might look like this:

Pause
to display ones.

Clear flag FO.

Is
flag FO
set?

Pause
to display zeros.

Set flag FO.

258 Flags
The program assumes that you have the number O in storage register

R, and the number 1.111111111 has been stored in storage
register R;.

Slide the W/PRGM-RUN switch wreram [[[[IllRuN to W/PRGM.

Press Display

(CEeY 000

(Em] A | 001 31 25 11
39 002 23 09 Recalls and displays ones
! 003 34 01 from register R
[h] 004 35 72 v
@cAo 005 35 61 00] Clears flag FO.

loo6 31 25 12] -

(F2 0 007 35 71 00 If set (true), go to
(A] 008 211 .
0 :009 34 00 |y Otherwise, recall and dis-
(010 35 72 |\ play zeros from register
[h JENY 011 35 51 00 || R,, set flag FO, and go to
5] @a.
RTN 013 35 22

Now switch to RUN mode and initialize and run the program. To
run the program:

Slide the W/PRGM-RUN switch wrra™ lll[[Irun to RUN.

Press Display

0 0. :

losP I°) 0.000000000

0 Initializes the program.
L111111111

1

(A} 1.111111111 All ones and all zeros
0.000000000 displayed alternately.

To stop the running program at any time, merely press (or any
key) from the keyboard.

How it works. After you have initialized the program by storing all
zeros in register R, and all ones in register R;, the program begins
running when you press [3. The 1 and @3 instructions
in steps 003 and 004 pause to display all ones from storage register
R;. The @ [CF) O instruction in step 005 clears flag FO. (Since the flag
is already clear when you begin the program, the status of the flag
simply remains the same.)

There is no [RTN) after the routine begun by (20 [, so execution
continues through the ((°) [instruction in step 006 to the test,
@ (F?) 0, in step 007. The @3 (F?) O instruction asks the question
““Is flag FO set (true)?”’ Since the flag has been cleared earlier, the
answer is NO, and execution skips one step of program memory and
continues with the 0 instruction in step 009. The (¥ 0 and
(h] instructions in steps 009 and 010 pause to display all zeros
from register Ry. Flag FO is then set by the @3 (SF) O instruction in
step 011, and execution is transferred to (2] [EJ by the (B
instruction in step 012.

With flag FO now set, the answer to the test @ (F2) 0 (‘‘Is flag FO
true?’’) is now YES, so the calculator executes the 3 instruction
in step 008, the next step after the test. After again pausing to display
all zeros, the flag is cleared, and the program continues in an endless
cycle, alternately displaying ones and zeros, until you stop execution
from the keyboard.

The above program utilized one of the two command-cleared flags,
so an(3 instruction was required to clear it each time. However,
you should also be able to modify this program using one of the test-
cleared flags, F2 or F3, and shorten the program, saving one step
of memory.

Data Entry Flag

The data entry flag, flag F3, is a flag that is set for data entry and
cleared upon test. These features of this flag can be used for inter-
changeable solutions in a program. It is set by manually entering
numerical data, by entering data via the card reader, or by BJ(sF 3.
Once set, it remains set until tested by BY(F? 3, or cleared by @J(CF 3.

Example: The program below calculates the distance (d), speed (s),
or time (¢) for a moving body according to the following formulas:

d = st distance = speed X time
_d o L
s = - speed = distance + time

d
S

t = time = distance + speed

Given any two of the quantities d, s, and ¢, the program will calculate
the third. The program uses the test-clearing feature of data entry
flag F3 to decide whether to store a quantity away or to use pre-
viously stored quantities for calculation. If you recorded the program
on a magnetic card, the card might look like this:

0 D/ISTANCE, SPEED, AWD T/Mzﬂ

Bpezd e St . . .

As you can see from the flowcharts shown on pages 261 and 262,
when the user-definable key® |B3 | orfd is pressed, a decision is
made. If you have keyed in a value, that value is stored for further
calculations. If you have not keyed in a value, the program calculates
the desired quantity. The decision to store or to calculate is made
depending upon whether the data entry flag, flag F3, is set or cleared.

Flags 261

S din
and display d. register R,.

Calculate Store s in
and display s. register R,.

262

Flags

Calculate t
using d
ands.

Change t
to hours,
minutes,
seconds.

Display t.

Was
t input
as digit
entry?

Change t
to decimal

Store t in
er R,

Flags 263

To key in the program:
Slide the W/PRGM-RUN switch werem [[[[Illrun to W/PRGM.

Press Display
(CcLenc
mEn]
1 002 01
[003 35 33
004 35 521 | 1f digit entry flag set,
(F7 3 005 35 71 03 || distance is stored. If flag
1 is cleared, distance is
i3 2 007 34 02| calculated.
RCL K] 008 34 03
a 009 71
CJ 010 31 84
[o17 35 22]
mn)) (07237 25 72]
2 013 02
(014 35 33
L 015 35 52 If digit entry flag set,
1 3 - speed is stored..If flag is
. cleared, speed is
3 510 29 03 calculated.
& [020 81
3 (021 31 84
022 35 22

264 |

Press Display
(| 023 31 25 13
Q r)3 024 35 71 03
GTO A 025 22 02
1 026 34 01 If digit entry flag set, time

is stored. If flag is

(027 34 02]
2 g;; = gf cleared, time is
a 029 52 74 | calculated.
J 030 31 84
ATN) 031 35 22

&1 032 31 25 01|) Routine to store distance
sT0 J(i)] 033 33 24| ;or speed in appropriate
fTN) 034 35 22|) storage register.

035 31 25 02|) Routine to convert time

h

3 036 31 74| | from hours, minutes, sec-
3 037 33 03| | onds format to decimal
0 sy 038 35 22|) hours for calculation.

Since the data entry flag F3 is also a test-cleared flag, it is cleared
as soon as it is tested during each routine. Therefore, you do not have
to use an i} €F]instruction in each routine to prepare the flag for a
new case.

Running the program. At this writing, the world speed record for
an aircraft over a straight course is 2070.101 miles per hour by a
Lockheed YF12A. Run the program to find the time at this speed
that it would take the aircraft to travel the 3500 miles from New York
to London.

To run the program:
Slide the W/PRGM-RUN switch weram [lI[[JRuN to RUN.

Press Display

(DSP I3 Initializes program.

350083

2070.101 8

The time would be 1 hour,
41 minutes, 26.66
seconds.

Now run the program to find out how far an automobile averaging
95 kilometers per hour could travel in 2 days.

Press Display

950

2

248

(A The automobile would

travel 4560 kilomieters.

266

The present Olympic record for the
1500-meter run is 3 minutes, 34.9 sec-
onds, set at the 1968 Olympic Games
by Kipchoge Keino of Kenya. What
was Keino’s speed in kilometers per
hour?

(A kilometer is equal to 1000 meters,
so key in the distance as 1.5 kilo-

e

g j meters.)
Press Display
1.50 1.500000 Distance keyed in.

.03349 0.059694 Time converted to
decimal hours.

(B] 25.127967 Keino’s speed was about

25 kilometers per hour.

Notice in the above program how a flag can be used to make a
decision and change the execution of a program based upon past
events. Remember, too, that the status of any flag can be changed
from the keyboard or from a running program.

Problems

1. Modify the program on page 258 that alternately displays all
zeros and all ones. Use test-cleared flag F2 or F3 instead of
command-cleared flag FO. Your program should be one step
shorter, since flags F2 and F3 clear when they are tested, and do
not require an CF] instruction.

2. One mile is equal to 1.609344 kilometers. Use the flowchart
on the opposite page to create and load a program that will
permit you to key in distance in either miles (define the routine
with (] B) or kilometers (define this routine with
(0 (@) and, using a flag and a subroutine, either multiply
or divide to convert from one unit of measure to the other.
(Hint: QICA)E3 yields the same result as .)

Run the program to convert 26 miles into kilometers; to convert
1500 meters (1.5 kilometers) into miles.
(Answers: 41.84 kilometers; 0.93 miles.)

Flags 267

Key Key in
in miles. kilometers.

Start Start

Clear flag.

Place
1.609344
in X-register.

Multiply.

Create and load a program that stores in successive storage
registers values that you key in during a pause. Use the data
entry flag F3 to make a decision whether to store the number or
merely to wait for another input. Use the flowchart on page 269

to help you. By using the data entry flag F3, you cankey in values
for zero and have them stored too.

When you have loaded the program, run it to check its opera-
tion. You should be able to store up to 25 values (including
values of zero) in succeeding storage registers. Manually recall
a few random values from some of the storage registers to ensure
that the program has operated correctly.

Flags 269

Clear flag F3.

Pause to key
in data.

Is
flag F3
set?

Store data
in register
addressed by (i).

Increment I.

Section 14

The programs that you have manually loaded into the HP-67 can be
preserved permanently on magnetic cards. In addition, data from the
storage registers can also be preserved on magnetic cards. By using
magnetic cards and the card reader in your HP-67 Programmable
Pocket Calculator, you can increase the capability of your machine
almost infinitely.

Magnetic Cards

The prerecorded magnetic cards and the blank cards that you received
with your HP-67 and Standard Pac are all alike—the only difference
is the information that is recorded upon them. Each card contains two
sides, or tracks, where program information or data can be recorded.

Whether passing side 1 or side 2 of the card through
the card reader, always have the printed face of the card
up.

Side 1—»@1 ﬂ<—3ide 2
Sg » - - - -

Each side of the card is the same, and it does not matter which side
is used first. In this handbook, we have adopted the convention of
using side 1 first, then side 2; but as you will see, you can record
onto or load from a magnetic card in any order you choose. Each
side may contain either data or program information, but not both
at once.

271

All magnetic cards are alike physically. Depending upon the type of
information recorded upon it, however, a card may be considered
a program card, a data card, or even a mixed card (where one side
contains program information and the other side contains data).

Program Cards

Recording a Program onto a Card

A program that you have loaded into the HP-67 is not permanent—it
will be lost when you turn off the calculator. You can, however, save
any program permanently by recording it on a magnetic card.

To record a loaded program from program memory onto a magnetic
card:

1. Set the W/PRGM-RUN switch weram [[[[Illlrun to W/PRGM.

2. Select a blank, unprotected (unclipped) magnetic card from the
packet of blank cards shipped with your HP-67.

3. Pass side 1 of the card through the card reader exactly as you
did when loading a prerecorded program from the card to the
calculator.

a. If the program fills up only 112 steps or fewer of program
memory, the contents of all of program memory (that is, the
program instructions in steps 001 through 112 and the
instructions in steps 113 through 224) are recorded on side
1 of the card, steps 113 through 224 in a ‘‘compressed’’ form.
The calculator displays the current program memory step to
show you that the entire program has been recorded.

b. If the program fills up more than 112 steps of program
memory (that is, if steps 113 through 224 contain instructions
other than (R/S)) the calculator displays to
prompt you that another side of the card must be passed through
the card reader to record the entire program. Pass the second
side of the card through the card reader. The calculator then
displays the current program memory step to show you that
the entire program has been recorded.

4. The entire program is now recorded on the magnetic card, and
also remains loaded in program memory of the calculator. The
contents of the data storage registers and the stack of the
calculator remain unchanged.

When you pass an unprotected card through the card reader with the
W/PRGM-RUN switch set to W/PRGM, whatever program instruc-
tions or data previously recorded on the card are wiped out and re-
placed by the contents of the HP-67 calculator’s program memory.

Besides the actual program memory step numbers and instructions,
the HP-67 also records the following information on a program card
on both the first pass and the second pass through the card reader:

. The fact that a program (not data) is being recorded.

. The fact that this is side 1 (or side 2).

. Whether or not two passes are required.

. Current status of flags FO, F1, F2, and F3 within the calculator.

[V T N VS I S R

. Current status of trigonometric mode (i.e., DEG, RAD, or
GRD) within the calculator.

6. Current display format of the calculator.
7. A checksum (a code to verify that the program is complete when
it is reloaded).

Before recording a program, be sure that the flags are set or cleared as
initially required by the program, and that the trigonometric mode and
display format are properly specified. All of this information is later
read by the card reader when the program is reloaded back into the
calculator.
If any of the required information or program memory steps are not
recorded during a read, the HP-67 display will show
to indicate that the recording of the card was not complete. Clear the
error by pressing any key (the key function is not executed), then pass
the same side of the card through the card reader again.

Reloading a Recorded Program from a Card

Once a program has been recorded on a magnetic card, you can reload
it into the calculator any number of times. The procedure for reloading
a program from a magnetic card is the same as that for loading a
prerecorded program from a magnetic card into the calculator (see
page 124).

The status information recorded on the magnetic card along with the
program makes it unnecessary to load the card in any order—you can
load either side 1 or side 2 first. The flag status, trigonometric mode,
and display format information recorded on the program card save
initialization time and program memory space because when the card
is loaded, the calculator’s flags, trigonometric mode, and display
format are immediately specified according to the information of the
program card.

If a program card does not read correctly, or if information on the
card has been altered (perhaps by a strong magnetic field), the check-
sum will be wrong. When you attempt to load the program from the
card into the calculator by passing it through the card reader, the
calculator will display . You can clear the error by
pressing any key. If a card read fails after a portion of the card has
been loaded, that portion of the calculator’s program memory which
would have been altered by reading the card is cleared to
instructions, and the calculator display indicates
Error is also indicated if you attempt to load a blank magnetic card,
but the contents of the calculator’s program memory are preserved.

The contents of the stack and of the data storage registers in the
calculator remain unchanged when a program is loaded, whether
from a card or manually from the keyboard.

To clear a program that has been recorded on a magnetic card, simply
load another program onto the card.

Merging Programs

Normally, whenever you load a program from a magnetic card into
the calculator, that program replaces the entire contents of program
memory, either with program instructions or instructions. All
224 steps of program memory are replaced.

However, you can also merge programs in your HP-67; that is, you
can add a program that is recorded on a magnetic card into the
calculator, beginning with any step of program memory. When you
merge a program in from a card, steps 000 through nnn of the original
program are preserved. This feature permits you to add to or alter a
program that is already loaded in the calculator.

ird Reader Operations 275

To merge a program from a magnetic card into program memory:

1. Set the W/PRGM-RUN switch werem M RuN to RUN.

2. Use the () M (M) (M operation from the keyboard to
set the calculator to the last step of the loaded program that you
want to save.

3. Press B) (merge).

4. Pass one side of the magnetic card containing the new program
through the card reader. If the second side of the card must
also be loaded, the calculator display will prompt you with

Crd

5. If the calculator display shows , pass the second

side of the card through the card reader. The calculator will
again display the original contents of the X-register to indicate
that the merged load has been completed.

When you merge a program from a card into program memory, the
instructions from the card are loaded into the calculator beginning
with the step of program memory following the step to which the
calculator is set. Thus, if you first set the calculator to step 118
using the operation () 118 from the keyboard, the first
instruction from the magnetic card would be loaded into step 119,
the second instruction into step 120, etc. All instructions in program
memory after the merge step are replaced by instructions from the
magnetic card.

Remember, in some cases even one side of a program card may
contain 224 steps (although the last 112 steps are compressed
instructions).

Thus, a 224-step program loaded in the calculator and a magnetic
card containing a 50-step program (and 174 instructions) might
look like the illustration below:

Program loaded in calculator. Program recorded on magnetic card.

000 000
001 I (D B 001 [(ED @
002 © 002 =
003

048
116 3 B

049 EX
117

050 RTN)
118 =

051 (RS
119) 052 S
120
121 (53 (®

216
166 B 217
167 B3 218
168 (2 219
169 =] 220 [Rs

221
222 222
223 = 223
224 FTN) 224 [R5

If you set the calculator to step 118, press [} (MERGE], and pass the

card through the card reader, the instructions from the card will be
merged in beginning with step 119 and continuing through step 168.
(That is, 118 + 50 = 168). All instructions after step 118 will be
replaced in the original program, either by program instructions or
instructions from the magnetic card.

000
oo1 1) (0D
002 ©
003 0

Steps 001 through

118 remain intact.
116 (=)
117
118 (=)

77,
s \ The program from the
% magnetic card replaces
all instructions after

step 118, including
instructions out to

2
420 00 o step 224.
Steps 119 & 21 003
through 224 Q
are lost. 769
769 & @@
& 166 L @
9 -
167 04 “\gﬂi\
oo |0
51
2 Qs 169 | °
224 &
10
223
2 1%
2

When merging a program from a magnetic card with a program
already loaded into the calculator, only the instructions from the card
for which there are enough steps of program memory will be loaded.
Thus, in the example above, if you had merged the card from step 200
of the loaded program, only the first 24 instructions of the card would
be loaded. (That is, 224 — 200 = 24.)

278 Card Reader Operations

When merging, the instructions that are replaced in program memory
by the instructions from the magnetic card are lost. The entire program
on the card, of course, remains recorded there permanently, until
another program (or data) is recorded upon the card.

Calculator status information (flag, display and trigonometric
modes) is not changed when merging a new program with the one
in program memory.

Protecting a Card

Information (whether program or data) that you have recorded upon
amagnetic card can be cleared or replaced unless the card is protected.
To protect a side of a recorded card, clip the notched corner of the
card nearest the side you want to protect.

Clip here to
protect side 1.

i S

7

Not here—you could lose part of the program. Clip here to
protect side 2.
When you have protected a recorded program or recorded data on
a side of a card by clipping that corner of the card, you can load
that information into the HP-67 any number of times, but you will
not be able to replace or add to the program or data on the card.

Marking a Card

After you have recorded a program on a card, you will probably
want to assign the program a name and to mark the name onto the
card. In addition, you will probably want to mark symbols onto the
magnetic card so that when the card is inserted in the window slot,
they will appear above the letter keys ([§ through [@, (&) through (£))
associated with the labels in the program. These symbols, or
mnemonics, should help you remember the use of the letter keys in
the program, and they will aid in running the program.

For example, if you had written a program that would convert degrees
Celsius to degrees Fahrenheit when was pressed, and degrees
Fahrenheit to degrees Celsius when [£] was pressed, you might wish
to mark the card with the information as shown on the following page.

¢ TEMP. CoNVELS/ON P
= - - _(’-’F_ F-> G - .

You can write on the non-magnetic side of a card as shown above
using any writing implement that does not emboss the card.
Annotating magnetic cards with a typewriter may impair the
load/record properties of the cards. To permanently mark a card, you
can use India ink or a permanent felt-tip pen.

Data Cards

As you know, you can record programs on magnetic cards for
permanent storage, and then simply pass the card containing a
program through the card reader whenever you want to run it again.
You can also record data from the storage registers onto a magnetic
card for permanent storage or for use at a later time. Then, a day,
a week, a year later, simply pass the data card through the card reader
to restore the original contents of the storage registers.

With this feature of the HP-67 you can store extremely large
quantities of data for future use, or you can use each card to preserve
a series of constants.

Recording Data onto a Card

The " (/07 function and the card reader on your HP-67 allow
you to record as much data as you wish on magnetic cards. To record
data on a magnetic card:

1. Set the W/PRGM-RUN switch werem lMIRun to RUN.

2. Store data in any storage register—R, through Ry, Rg, through
Rsg, Ry through Rg, or L.

3. Press (227 (write data onto card). The calculator will

display to indicate that you are to pass a card

through the card reader.

4. Select an unclipped magnetic card. Pass side 1 of the card
through the card reader.

a. The contents of the primary storage registers (R, through
Ry, R4 through Rg, I) are recorded on side 1. If the calculator’s
protected secondary registers (Rg, through Rgg) all contain
zero data, those contents are ‘‘compressed’’ and recorded on
side 1 also. The calculator displays the original contents of the
X-register to indicate that all data has been correctly recorded.

b. If any of the secondary storage registers (Rg, through Rgg)

contain nonzero data, the display shows to

indicate that a second side is necessary to record all the data.

c. Pass side 2 of the card through the card reader. The actual
contents of the secondary storage registers Rg, through Rgg
are recorded on the second side of the card.

5. All data has now been recorded on the magnetic card. In
addition, the data remains intact in the calculator.

Besides the data from the storage registers, the HP-67 also records
the following information onto a data card on either or both passes
through the card reader:

1. The fact that data (not a program) is being recorded.

2. The fact that this is side 1 (or side 2).
3. Whether or not two passes are required.

4. A checksum (a code to verify that the data is complete when it
is reloaded).

No calculator status information is recorded when data is recorded
onto a magnetic card.

When data is recorded on a side of a magnetic card, it wipes out
whatever information was previously on that side. To record data
permanently on a card, so that it can never be lost, you can clip a
corner of the recorded magnetic card, just as you do to permanently
save a recorded program.

Loading Data from a Card

To load data from a recorded card back into the storage registers,
simply pass the card through the card reader with the W/PRGM-RUN
switch set to RUN. The HP-67 identifies the type of information
(whether data or a program) and automatically places it into the proper
portion of the calculator. Thus, to load data back into the calculator
from a magnetic card:

1. Ensure that the W/PRGM-RUN switch wieram [ruN is set
to RUN.

2. Select the magnetic card with data recorded upon it.
3. Pass side 1 of the magnetic card through the card reader.

a. Data from the card has now replaced data in the 16 primary
storage registers of the calculator. In addition, if the secondary
registers contained all zeros when recorded, those zeros replace
the contents of the secondary registers (Rgo through Rgg) of the
calculator. The calculator displays the original contents of the
X-register to indicate that by loading only one side, the card
was loaded correctly.

c. If a second side of the card is required, the calculator
prompts you by displaying .

d. Pass side 2 of the card through the card reader to load
nonzero data into the secondary storage registers. The calculator
then displays the original contents of the X-register to indicate
that the data card has been loaded completely.

It does not matter which side of the card you record or load first. The
HP-67 records the contents of the primary storage registers on the first
side recorded, and the contents of the secondary storage registers on
the second side. (If all secondary registers contain only zero, the
contents of all storage registers are recorded on the first side.) When
the card is then read later, the data is loaded into the proper registers,
regardless of which side of the data card you first pass through the
reader. However, for ease of later reference, it is generally best to
record primary registers on side 1 and secondary registers on side 2.

Whenever the calculator indicates , you can clear the

display and return control to the keyboard by pressing
or any key from the keyboard. In this way, you can record only
part of the storage registers onto a card or load only part from a card.

282 Card Reader Operations

Neither the stack nor the contents of program memory are altered
in the calculator when you record data onto or load data from a card.

Now let’s store data in some of the storage registers and see how

these features of your HP-67 work.

Example: Store 1.00 in primary register R;, 2.00 in secondary
register Rg,, and 3.00 in the I-register. Record the contents of these
registers on a magnetic card, then turn the HP-67 OFF then ON.
Finally, restore the data on the magnetic card to the proper registers
and display the contents of the registers to verify that the data has

been loaded correctly.

Press Display

G 2
(NS
()
[CLrec)

260 2
&3

16808 1

30

All storage registers
cleared to zero initially.

2 stored in secondary
storage register Rg,.

First select a blank and unclipped magnetic card. To then record the
contents of the storage registers onto the card:

Press Display
(w/oata) Crd

The calculator prompts
you to insert the first side
of the card.

Card Reader Operations 283

Insert side 1 of the magnetic card into the right-hand slot of the card
reader and permit it to be passed through the reader.
Displa
Py After recording the first
Crd side of the card, the cal-
culator prompts you that

it has additional data to
record on side 2.

Insert side 2 of the magnetic card into the right-hand slot of the card
reader and allow it to pass through the reader.

Display
Indicates that all data has

been recorded on the
magnetic card.

The data that is stored in the registers remains there now, and is also
recorded on the magnetic card. Even though you turn the calculator
OFF or otherwise clear the storage registers, the data is recorded upon
the magnetic card for future use. For example:

Turn the HP-67 power switch OFF, then ON.

Press Display
0
=3
[h] 0.00 Successive displays of zero

verify that none of the
storage registers, primary
or secondary, contain
data.

Now load the data back into the storage registers by passing the data
card through the card reader. No special instructions are necessary
to the HP-67—the calculator automatically recognizes that the card
contains data, and reloads the data into the proper storage registers.

To load the data from the card into the calculator:

Insert side 1 of the magnetic card into the right card reader slot. Allow
the card to pass through the reader.

Display

Crd Data loaded into primary
storage registers. The
calculator prompts you
that the card contains data
for the secondary registers
as well.

Insert side 2 of the magnetic card into the right card reader slot. Allow
the card to pass through the reader.

Original contents of
X-register again displayed
to indicate that entire card
has been loaded.

>]
3

g

g

Reviewing the registers

verifies that contents of

data card have been load-
ed into the proper storage
registers.

You can see that all the data contained on the magnetic card has been
loaded into the proper storage registers. The data also remains record-
ed on the magnetic card, and can be loaded into the calculator over
and over, until you record other data or a program on that card. Data
(like programs) may be loaded into the calculator from a card in any
order—no matter which side you first pass through the card reader,
the calculator identifies it and places the contents in the proper storage
registers of the calculator.

Press Display

i
i

All primary and second-
ary storage registers
again cleared to zero.

This time, insert side 2 of the magnetic card into the right card reader
slot first. Allow the card to pass through the card reader.

Display
Crd Display indicates that the
card contains more data
to be loaded.

Now insert side 1 of the data card into the right card reader slot and
allow it to pass through the card reader.

Press Display

Original contents of
X-register returned to
indicate that contents of
entire magnetic card have
been loaded.

8
8

Verifies that data from
the magnetic card has
again been loaded into the
proper storage registers.

If only the primary registers contain nonzero data when you press

(W/DaT), the calculator will display only until you
have passed one side of the magnetic card through the card reader.
Then the calculator will display the original contents of the X-register
to indicate that you again have control from the keyboard. Likewise,
if data is contained on only one side (side 1 or side 2) of a magnetic
card, you need load only that side.

286 Card Reader Operations

You have seen how you can store data temporarily or permanently
on magnetic cards with the HP-67. Because you are able to record
data on magnetic cards, the storage capacity of your HP-67 is
increased by 26 registers on each card. The amount of data you want
to store is limited only by the number of cards you have!

Now let’s see how you can load the contents of only part of the storage
registers into the calculator from a card by using the I-register and

the function.

Merged Loading of Data

The numbers 0 through 9 in I, when used as an address for merged
data, refer to primary storage registers R, through Ry. The numbers
10 through 19 refer to secondary storage registers Rg, through Rgy,
while the numbers 20 through 24 refer to registers R, through Rg,
and the number 25 addresses the I-register itself. As is normal for
I-register operations, only the absolute value of the integer part of the
number in I is significant in addressing. Also, if the absolute value
of the number in I is 26 or greater, all registers will be read in just
as in an unmerged data read.

However, you can also replace the contents of some of the storage
registers in the calculator with data from a magnetic card, while
preserving the contents of the rest of the storage registers. To load
only a portion of the data from magnetic card into the calculator’s
storage registers, first store a number from 0 through 25 as an address
in the I-register. Then press) (merge) and pass the card
containing data through the card reader. Data will be loaded from the
card into the storage registers, beginning with register R, and continu-
ing up to and including the register addressed by the number in I.

When using your HP-67 there may be occasions when you want to
load into the calculator the contents of only some of the storage
registers recorded on a card. The £} function and the I-register
permit you to select the number of registers that you want to load.

Normally, when a magnetic card containing data is passed through the
card reader, the contents of all primary registers and all secondary
registers in the calculator are replaced with the contents of the data
card.

Card Reader Operations 287

The illustration below should refresh your memory of the addressing
scheme for the storage registers:

Primary Storage Registers
Address

1 25

Re[] 24
Ro[__J 23
R]2
Re] 2

A 20

Secondary Registers
Address

Ry, R 19
Rl 18
R [17
R [16
R, EEZEEAR 15
R, (ST 14
N RS
.. (ST 12
R R 11
o IR 10

Address

&P
O = N WH OO N®® O

To merge data from a magnetic card into selected storage registers:

1. Store in I the number address of the last storage register you
want loaded from the card.

2. Press B} (merge) to select the merge mode.

3. Pass either side of the magnetic card containing data through
the card reader. If more data is to be loaded, the calculator will

display :

288

4. If the HP-67 display shows , pass the other side

of the data card through the card reader.

5. Data will be loaded from the card beginning with register R,
up to and including the storage register specified by the number
in L.

Thus, if you had stored the number 7 in I, then pressed £} (MERGE]) and
loaded a magnetic card containing data, the contents of the first 8
registers in the calculator (R, through R;) would have been replaced
by contents from the data card. The remainder of the storage registers
in the calculator would remain intact. If you had stored the number 15
in I, calculator registers R, through Ry and Rg, through Rg; (the
register addressed by the number 15) would have had their contents
replaced by data from the card. This includes registers containing
only zero data.

Example: Store 1 X 10" in register R,, 1 X 1072° in register Ry,
1 X 10% in register Rgs, 1 X 107 in register Rgg, and 1 X 10%°
in register Ry in the calculator. Record this data on a magnetic card.

Press Display

(Ctreq)
& 20
5 1.000000000 30
B 40
6

=

&=
@ 10
! (7000000000 73]
& 20 T, =20
5
&= 50
o

Now record this data on a magnetic card. You can record it onto any
unclipped magnetic card—it will replace whatever is on the card
with the contents of the storage registers.

Press Display

(w/DaTA) Calculator prompts you

to insert a magnetic card.
Pass side 1 of the card through the card reader.

Display
Crd

Now pass side 2 of the magnetic card through the card reader.
Display

1.000000000 50

The calculator again displays the contents of the X-register to indicate
that all data in the calculator’s storage registers has been recorded
onto the card as well.

Now change the data in the calculator. Store 1.11 in R;, 2.22 in Ry,
5.55 in Rgs, 6.66 in Rgg, and 7.77 in Rg. Review the contents of all
the registers when you are through.

Press Display
[CCre) ,
&8) All storage registers
=3 cleared to zero.
5.5560 5 .
6.66 G1 6 } Data stored in
=8 secondary registers.
111 1
222808 9 222]
7.7760 O 7z]
Reviewing stack registers
shows you the data in the
(h] various registers. The
=3) original X-register con-
tents return to the display
=) when the review is

completed.

290 Card Reader Operations

Now store the number 15 in I, press the [E}) function, and load
the contents of the first 16 storage registers from the magnetic card
into the calculator, while preserving the contents of the last 10 storage
registers in the calculator.

Press Display

150 Merge address stored in 1.
a 15.00

Now pass side 1 of the data card through the card reader.

Display

Crd Calculator prompts you
that additional data must
be loaded from the card.

Pass side 2 of the data card through the card reader. Review the new
contents of the storage registers and compare them with the old.

Press Display

15.00 Contents of X-register

returned to display to
indicate that all necessary
data has been loaded from
the card into the calcu-
lator’s storage registers.

After automatically

15.00 reviewing the contents of

) 15.00 the storage registers, the
original contents of the
15.00 X-register are returned
there.

You can see that the contents of the storage registers addressed by
numbers 0-15 (that is, storage registers R, through Ry and secondary
storage registers Rg, through Rg;) have had their contents replaced by
data from the magnetic card, while the contents of the remaining
storage registers are preserved intact.

d Reader (

Operation: 201

When you stored an address of 15 in the I-register, pressed £l ,
and passed a magnetic card containing data through the card reader:

Primary Registers
I Jes

Re [] 24
Ro[_____] 23
Re[___]2
Re [] 2t
R[_J2

R]
Rl]
RO]
R]
R]
RO 1]
R]
R]
R]
R[]

O =N WA OO N O ©

Secondary Registers

R, [19

[18
Rs, [17
R, (BT 16
Re; RIS 15
R, [14
Re. [EEEEEE 13
Re. [flEen) 12
R, [11
R, (BRI 10

The contents of these
registers remained intact.

The contents of these
registers were replaced
by data from the magnetic
card.

If you do not wish to load or record data when the calculator displays
, you can press any key to return the contents of the
X-register to the display, then continue with your calculations. This
allows you to load only the primary or only the secondary registers
from a card without pressing £ (MERGE].

As soon as you have finished loading data or pressed any key from
the keyboard, the function is forgotten. You must press
it each time just before you merge data.

292 ard Reader Ope

For example, if you load data from the magnetic card now without
pressing 3 first, the contents of all storage registers in the
calculator will be replaced by data from the card.

Pass side 1 of the data card through the card reader.

Display
Crd

Now pass side 2 of the data card through the card reader.

Press Display

15.00
(h] 15.00 Register review verifies that
S all data from card is now
15.00 loaded into the calculator.

Note that when the card was recorded many storage registers,
including I, contained zero. When the card was then read and data
loaded into the calculator, the zeros in these registers replaced the
previous contents of their corresponding registers in the calculator.

Pausing to Read a Card

As you know, the (3 instruction in a program returns control
from the running program to the keyboard for the length of a pause
(about one second). You have already seen how (3 can be
used in a program for output (to display information contained in
the X-register) or input (to key in numbers). You can also use a
to load data or a program from a magnetic card into the
calculator.

You can pause in a program for any or all of the following operations:

1. Loading a program from a card into program memory.

2. Merging a program from a card into a selected part of program
memory.

3. Loading data from a card into the storage registers.

4. Merging data from a card into selected storage registers.

These operations are used the same way as part of a program as you
would use them from the keyboard. If you desire to merge data or a
program from a magnetic card into the calculator, a merge instruction,
() (MERGE], must be executed as an instruction or pressed immediately
before the magnetic card is passed through the card reader. In
addition, for a merged data load from a card, the proper address
must be first placed in the I-register at some point, whether from
the keyboard or as part of the program.

To use to load a program or data from a magnetic card into
the calculator while a program is running:

1. a. Place an(} instruction at the point in the program
where you want to load the data or program.

b. If the data or the program from the magnetic card is to be
merged with that in the calculator, insert a) (MERGE] instruction
immediately preceding the 3 instruction.

c. If data is to be merged into the registers, ensure that the
proper address number has been placed in I, either from the
keyboard or from the program.

2. Slide the W/PRGM-RUN switch wrrem [llIMIRUN to RUN.

3. Initialize and run the program.

The card reader is inoperative while the program is running.
Therefore, you may go ahead and insert the leading edge of the
first side to be read into the car